{"title":"神经形态计算中的弛豫反铁电动力学","authors":"Dongliang Yang, Yinan Lin, Weifan Meng, Zhongyi Wang, Huihan Li, Ce Li, Zirui Zhang, Qianyu Zhang, Junqi You, Jiarui Wang, Tianze Yu, Yutao Li, Weiting Miao, Weili Zhen, Fei Xue, Ruixiang Fei, Linfeng Sun","doi":"10.1002/adma.202419204","DOIUrl":null,"url":null,"abstract":"Relaxor antiferroelectric (AFE) materials display a gradual polarization response and high energy storage density with polarization slowly reverting after removing an external field. This distinctive polarization-switching behavior closely resembles synaptic plasticity in biological nervous systems, presenting substantial potential for neuromorphic computing applications. Especially, its 2D scenario exhibits unique physical properties and maintains stability at atomic thickness due to their antipolar alignment, which effectively eliminates the depolarization field effect. Such stable 2D relaxor AFE materials offer significant advantages for integrating these materials into modern electronic devices for neuromorphic computing. In this study, the potential of a novel quaternary layered AFE material, CuBiP₂Se₆ (CBPS), is explored for neuromorphic device applications. CBPS exhibits a broad range of light absorption and stable relaxor AFE behavior, rendering it an outstanding candidate for optoelectronic synaptic devices. High-quality CBPS is synthesized and its AFE properties through various characterization techniques are verified. CBPS-based synaptic devices demonstrate dual-mode tunable resistance plasticity stimulated by both electrical and optical inputs, demonstrating the capacity to perform in-sensor computing for image restoration tasks. These findings suggest that relaxor AFE materials like CBPS could provide a robust platform for various brain-inspired applications, particularly in neuromorphic computing, and artificial visual systems.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"23 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relaxor Antiferroelectric Dynamics for Neuromorphic Computing\",\"authors\":\"Dongliang Yang, Yinan Lin, Weifan Meng, Zhongyi Wang, Huihan Li, Ce Li, Zirui Zhang, Qianyu Zhang, Junqi You, Jiarui Wang, Tianze Yu, Yutao Li, Weiting Miao, Weili Zhen, Fei Xue, Ruixiang Fei, Linfeng Sun\",\"doi\":\"10.1002/adma.202419204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relaxor antiferroelectric (AFE) materials display a gradual polarization response and high energy storage density with polarization slowly reverting after removing an external field. This distinctive polarization-switching behavior closely resembles synaptic plasticity in biological nervous systems, presenting substantial potential for neuromorphic computing applications. Especially, its 2D scenario exhibits unique physical properties and maintains stability at atomic thickness due to their antipolar alignment, which effectively eliminates the depolarization field effect. Such stable 2D relaxor AFE materials offer significant advantages for integrating these materials into modern electronic devices for neuromorphic computing. In this study, the potential of a novel quaternary layered AFE material, CuBiP₂Se₆ (CBPS), is explored for neuromorphic device applications. CBPS exhibits a broad range of light absorption and stable relaxor AFE behavior, rendering it an outstanding candidate for optoelectronic synaptic devices. High-quality CBPS is synthesized and its AFE properties through various characterization techniques are verified. CBPS-based synaptic devices demonstrate dual-mode tunable resistance plasticity stimulated by both electrical and optical inputs, demonstrating the capacity to perform in-sensor computing for image restoration tasks. These findings suggest that relaxor AFE materials like CBPS could provide a robust platform for various brain-inspired applications, particularly in neuromorphic computing, and artificial visual systems.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202419204\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419204","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Relaxor Antiferroelectric Dynamics for Neuromorphic Computing
Relaxor antiferroelectric (AFE) materials display a gradual polarization response and high energy storage density with polarization slowly reverting after removing an external field. This distinctive polarization-switching behavior closely resembles synaptic plasticity in biological nervous systems, presenting substantial potential for neuromorphic computing applications. Especially, its 2D scenario exhibits unique physical properties and maintains stability at atomic thickness due to their antipolar alignment, which effectively eliminates the depolarization field effect. Such stable 2D relaxor AFE materials offer significant advantages for integrating these materials into modern electronic devices for neuromorphic computing. In this study, the potential of a novel quaternary layered AFE material, CuBiP₂Se₆ (CBPS), is explored for neuromorphic device applications. CBPS exhibits a broad range of light absorption and stable relaxor AFE behavior, rendering it an outstanding candidate for optoelectronic synaptic devices. High-quality CBPS is synthesized and its AFE properties through various characterization techniques are verified. CBPS-based synaptic devices demonstrate dual-mode tunable resistance plasticity stimulated by both electrical and optical inputs, demonstrating the capacity to perform in-sensor computing for image restoration tasks. These findings suggest that relaxor AFE materials like CBPS could provide a robust platform for various brain-inspired applications, particularly in neuromorphic computing, and artificial visual systems.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.