基于离子液体的可逆金属电沉积在极端环境下的自适应辐射温度调节

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiawei Liang, Chenxi Sui, Jiacheng Tian, Genesis Higueros, Ting-Hsuan Chen, Ronghui Wu, Pei-Jan Hung, Yang Deng, Natalie Rozman, Willie John Padilla, Po-Chun Hsu
{"title":"基于离子液体的可逆金属电沉积在极端环境下的自适应辐射温度调节","authors":"Jiawei Liang, Chenxi Sui, Jiacheng Tian, Genesis Higueros, Ting-Hsuan Chen, Ronghui Wu, Pei-Jan Hung, Yang Deng, Natalie Rozman, Willie John Padilla, Po-Chun Hsu","doi":"10.1002/adfm.202419087","DOIUrl":null,"url":null,"abstract":"This paper presents the development of an electrochemically-driven variable emission thermoregulating device designed for efficient radiative heat management across various temperature environments. Utilizing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF<sub>4</sub>), the study explores its thermal and electrochemical stability, low vapor pressure, and excellent performance over a wide operational temperature range, making it an ideal electrolyte. The device uses mid-infrared electrochromic technology, employing ultra-wideband transparent conductive electrodes and reversible metal electrodeposition to dynamically adjust thermal emissivity between 0.06 and 0.89. This capability allows for significant improvements in heat management, offering a responsive and adaptable solution compared to current systems. The findings suggest that such advanced materials and mechanisms can enhance energy management in spacecraft, potentially extending to other space fields requiring precise thermal control.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"13 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionic Liquid-Based Reversible Metal Electrodeposition for Adaptive Radiative Thermoregulation Under Extreme Environments\",\"authors\":\"Jiawei Liang, Chenxi Sui, Jiacheng Tian, Genesis Higueros, Ting-Hsuan Chen, Ronghui Wu, Pei-Jan Hung, Yang Deng, Natalie Rozman, Willie John Padilla, Po-Chun Hsu\",\"doi\":\"10.1002/adfm.202419087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the development of an electrochemically-driven variable emission thermoregulating device designed for efficient radiative heat management across various temperature environments. Utilizing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF<sub>4</sub>), the study explores its thermal and electrochemical stability, low vapor pressure, and excellent performance over a wide operational temperature range, making it an ideal electrolyte. The device uses mid-infrared electrochromic technology, employing ultra-wideband transparent conductive electrodes and reversible metal electrodeposition to dynamically adjust thermal emissivity between 0.06 and 0.89. This capability allows for significant improvements in heat management, offering a responsive and adaptable solution compared to current systems. The findings suggest that such advanced materials and mechanisms can enhance energy management in spacecraft, potentially extending to other space fields requiring precise thermal control.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202419087\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202419087","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种电化学驱动的可变排放温度调节装置的开发,该装置设计用于在各种温度环境下进行高效的辐射热管理。该研究利用离子液体四氟硼酸1-丁基-3-甲基咪唑鎓(BMIMBF4),探索了其热和电化学稳定性、低蒸气压以及在宽工作温度范围内的优异性能,使其成为理想的电解质。该设备采用中红外电致变色技术,采用超宽带透明导电电极和可逆金属电沉积,动态调节0.06至0.89之间的热发射率。与当前系统相比,这种能力可以显著改善热管理,提供响应迅速、适应性强的解决方案。研究结果表明,这种先进的材料和机制可以增强航天器的能量管理,并有可能扩展到需要精确热控制的其他空间领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ionic Liquid-Based Reversible Metal Electrodeposition for Adaptive Radiative Thermoregulation Under Extreme Environments

Ionic Liquid-Based Reversible Metal Electrodeposition for Adaptive Radiative Thermoregulation Under Extreme Environments
This paper presents the development of an electrochemically-driven variable emission thermoregulating device designed for efficient radiative heat management across various temperature environments. Utilizing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), the study explores its thermal and electrochemical stability, low vapor pressure, and excellent performance over a wide operational temperature range, making it an ideal electrolyte. The device uses mid-infrared electrochromic technology, employing ultra-wideband transparent conductive electrodes and reversible metal electrodeposition to dynamically adjust thermal emissivity between 0.06 and 0.89. This capability allows for significant improvements in heat management, offering a responsive and adaptable solution compared to current systems. The findings suggest that such advanced materials and mechanisms can enhance energy management in spacecraft, potentially extending to other space fields requiring precise thermal control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信