Ling-Qi Zhang, Jiang Mao, Geoffrey K. Aguirre, Alan A. Stocker
{"title":"倾斜错觉产生于上下文边界神经编码资源的有效重新分配","authors":"Ling-Qi Zhang, Jiang Mao, Geoffrey K. Aguirre, Alan A. Stocker","doi":"10.1073/pnas.2421565122","DOIUrl":null,"url":null,"abstract":"The tilt illusion—a bias in the perceived orientation of a center stimulus induced by an oriented surround—illustrates how context shapes visual perception. Although extensively studied for decades, we still lack a comprehensive account of the illusion that connects its behavioral and neural characteristics. Here, we demonstrate that the tilt illusion originates from dynamic changes in neural coding precision induced by the surround context. We simultaneously obtained psychophysical and functional MRI responses from human subjects while they viewed gratings in the absence and presence of an oriented surround and independently extracted sensory encoding precision from their behavioral and neural data. Both measures show that in the absence of an oriented surround, encoding reflects the natural scene statistics of orientation. However, with an oriented surround, encoding precision is significantly increased for stimuli similar to the surround orientation. This local change in encoding is sufficient to predict the behavioral characteristics of the tilt illusion using a Bayesian observer model. The effect of surround modulation increases along the ventral stream and is localized to the portion of the visual cortex with receptive fields at the center-surround boundary. The pattern of change in coding accuracy reflects the surround-conditioned orientation statistics in natural scenes, but cannot be explained by local stimulus configuration. Our results suggest that the tilt illusion naturally emerges from an adaptive coding strategy that efficiently reallocates neural coding resources based on the current stimulus context.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"34 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The tilt illusion arises from an efficient reallocation of neural coding resources at the contextual boundary\",\"authors\":\"Ling-Qi Zhang, Jiang Mao, Geoffrey K. Aguirre, Alan A. Stocker\",\"doi\":\"10.1073/pnas.2421565122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tilt illusion—a bias in the perceived orientation of a center stimulus induced by an oriented surround—illustrates how context shapes visual perception. Although extensively studied for decades, we still lack a comprehensive account of the illusion that connects its behavioral and neural characteristics. Here, we demonstrate that the tilt illusion originates from dynamic changes in neural coding precision induced by the surround context. We simultaneously obtained psychophysical and functional MRI responses from human subjects while they viewed gratings in the absence and presence of an oriented surround and independently extracted sensory encoding precision from their behavioral and neural data. Both measures show that in the absence of an oriented surround, encoding reflects the natural scene statistics of orientation. However, with an oriented surround, encoding precision is significantly increased for stimuli similar to the surround orientation. This local change in encoding is sufficient to predict the behavioral characteristics of the tilt illusion using a Bayesian observer model. The effect of surround modulation increases along the ventral stream and is localized to the portion of the visual cortex with receptive fields at the center-surround boundary. The pattern of change in coding accuracy reflects the surround-conditioned orientation statistics in natural scenes, but cannot be explained by local stimulus configuration. Our results suggest that the tilt illusion naturally emerges from an adaptive coding strategy that efficiently reallocates neural coding resources based on the current stimulus context.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2421565122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2421565122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The tilt illusion arises from an efficient reallocation of neural coding resources at the contextual boundary
The tilt illusion—a bias in the perceived orientation of a center stimulus induced by an oriented surround—illustrates how context shapes visual perception. Although extensively studied for decades, we still lack a comprehensive account of the illusion that connects its behavioral and neural characteristics. Here, we demonstrate that the tilt illusion originates from dynamic changes in neural coding precision induced by the surround context. We simultaneously obtained psychophysical and functional MRI responses from human subjects while they viewed gratings in the absence and presence of an oriented surround and independently extracted sensory encoding precision from their behavioral and neural data. Both measures show that in the absence of an oriented surround, encoding reflects the natural scene statistics of orientation. However, with an oriented surround, encoding precision is significantly increased for stimuli similar to the surround orientation. This local change in encoding is sufficient to predict the behavioral characteristics of the tilt illusion using a Bayesian observer model. The effect of surround modulation increases along the ventral stream and is localized to the portion of the visual cortex with receptive fields at the center-surround boundary. The pattern of change in coding accuracy reflects the surround-conditioned orientation statistics in natural scenes, but cannot be explained by local stimulus configuration. Our results suggest that the tilt illusion naturally emerges from an adaptive coding strategy that efficiently reallocates neural coding resources based on the current stimulus context.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.