Jinge Gu, Xiaoming Zhou, Lillian Sutherland, Glen Liszczak, Steven L. McKnight
{"title":"一种在低序列复杂性的蛋白质结构域内绘制交叉β形成区域位置的简单方法","authors":"Jinge Gu, Xiaoming Zhou, Lillian Sutherland, Glen Liszczak, Steven L. McKnight","doi":"10.1073/pnas.2503382122","DOIUrl":null,"url":null,"abstract":"Protein domains of low sequence complexity are unable to fold into stable, three-dimensional structures. In test tube studies, these unusual polypeptide regions can self-associate in a manner causing phase separation from aqueous solution. This form of protein:protein interaction has been implicated in numerous examples of dynamic morphological organization within eukaryotic cells. In several cases, the basis for low complexity domain (LCD) self-association and phase separation has been traced to the formation of labile cross-β structures. The primary energetic force favoring formation of these transient and reversible structures is enabled by polypeptide backbone interactions. Short, contiguous networks of peptide backbone amino groups and carbonyl oxygens are zippered together intermolecularly by hydrogen bonding as described by Linus Pauling seven decades ago. Here, we describe a simple, molecular biological method useful for the identification of localized, self-associating regions within larger protein domains of low sequence complexity.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"71 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simple method for mapping the location of cross-β-forming regions within protein domains of low sequence complexity\",\"authors\":\"Jinge Gu, Xiaoming Zhou, Lillian Sutherland, Glen Liszczak, Steven L. McKnight\",\"doi\":\"10.1073/pnas.2503382122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein domains of low sequence complexity are unable to fold into stable, three-dimensional structures. In test tube studies, these unusual polypeptide regions can self-associate in a manner causing phase separation from aqueous solution. This form of protein:protein interaction has been implicated in numerous examples of dynamic morphological organization within eukaryotic cells. In several cases, the basis for low complexity domain (LCD) self-association and phase separation has been traced to the formation of labile cross-β structures. The primary energetic force favoring formation of these transient and reversible structures is enabled by polypeptide backbone interactions. Short, contiguous networks of peptide backbone amino groups and carbonyl oxygens are zippered together intermolecularly by hydrogen bonding as described by Linus Pauling seven decades ago. Here, we describe a simple, molecular biological method useful for the identification of localized, self-associating regions within larger protein domains of low sequence complexity.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2503382122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2503382122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A simple method for mapping the location of cross-β-forming regions within protein domains of low sequence complexity
Protein domains of low sequence complexity are unable to fold into stable, three-dimensional structures. In test tube studies, these unusual polypeptide regions can self-associate in a manner causing phase separation from aqueous solution. This form of protein:protein interaction has been implicated in numerous examples of dynamic morphological organization within eukaryotic cells. In several cases, the basis for low complexity domain (LCD) self-association and phase separation has been traced to the formation of labile cross-β structures. The primary energetic force favoring formation of these transient and reversible structures is enabled by polypeptide backbone interactions. Short, contiguous networks of peptide backbone amino groups and carbonyl oxygens are zippered together intermolecularly by hydrogen bonding as described by Linus Pauling seven decades ago. Here, we describe a simple, molecular biological method useful for the identification of localized, self-associating regions within larger protein domains of low sequence complexity.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.