Jan W. Kurzawski, Brenda S. Qiu, Najib J. Majaj, Noah C. Benson, Denis G. Pelli, Jonathan Winawer
{"title":"人类V4大小预测拥挤距离","authors":"Jan W. Kurzawski, Brenda S. Qiu, Najib J. Majaj, Noah C. Benson, Denis G. Pelli, Jonathan Winawer","doi":"10.1038/s41467-025-59101-w","DOIUrl":null,"url":null,"abstract":"<p>Visual recognition is limited by both object size (acuity) and spacing. The spacing limit, called “crowding”, is the failure to recognize an object in the presence of other objects. Here, we take advantage of individual differences in crowding to investigate its biological basis. Crowding distance, the minimum object spacing needed for recognition, varies 2-fold among healthy adults. We test the conjecture that this variation in psychophysical crowding distance is due to variation in cortical map size. To test this, we make paired measurements of brain and behavior in 49 observers. We use psychophysics to measure crowding distance and calculate <i>λ</i>, the number of letters that fit into each observer’s visual field without crowding. In the same observers, we use functional magnetic resonance imaging (fMRI) to measure the surface area <i>A</i> of retinotopic maps V1, V2, V3, and V4. Across observers, <i>λ</i> is proportional to the surface area of V4 but is uncorrelated with the surface area of V1 to V3. The proportional relationship of <i>λ</i> to area of V4 indicates conservation of cortical crowding distance across individuals: letters can be recognized if they are spaced by at least 1.4 mm on the V4 map, irrespective of map size and psychophysical crowding distance. We conclude that the size of V4 predicts the spacing limit of visual perception.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"33 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human V4 size predicts crowding distance\",\"authors\":\"Jan W. Kurzawski, Brenda S. Qiu, Najib J. Majaj, Noah C. Benson, Denis G. Pelli, Jonathan Winawer\",\"doi\":\"10.1038/s41467-025-59101-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Visual recognition is limited by both object size (acuity) and spacing. The spacing limit, called “crowding”, is the failure to recognize an object in the presence of other objects. Here, we take advantage of individual differences in crowding to investigate its biological basis. Crowding distance, the minimum object spacing needed for recognition, varies 2-fold among healthy adults. We test the conjecture that this variation in psychophysical crowding distance is due to variation in cortical map size. To test this, we make paired measurements of brain and behavior in 49 observers. We use psychophysics to measure crowding distance and calculate <i>λ</i>, the number of letters that fit into each observer’s visual field without crowding. In the same observers, we use functional magnetic resonance imaging (fMRI) to measure the surface area <i>A</i> of retinotopic maps V1, V2, V3, and V4. Across observers, <i>λ</i> is proportional to the surface area of V4 but is uncorrelated with the surface area of V1 to V3. The proportional relationship of <i>λ</i> to area of V4 indicates conservation of cortical crowding distance across individuals: letters can be recognized if they are spaced by at least 1.4 mm on the V4 map, irrespective of map size and psychophysical crowding distance. We conclude that the size of V4 predicts the spacing limit of visual perception.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59101-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59101-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Visual recognition is limited by both object size (acuity) and spacing. The spacing limit, called “crowding”, is the failure to recognize an object in the presence of other objects. Here, we take advantage of individual differences in crowding to investigate its biological basis. Crowding distance, the minimum object spacing needed for recognition, varies 2-fold among healthy adults. We test the conjecture that this variation in psychophysical crowding distance is due to variation in cortical map size. To test this, we make paired measurements of brain and behavior in 49 observers. We use psychophysics to measure crowding distance and calculate λ, the number of letters that fit into each observer’s visual field without crowding. In the same observers, we use functional magnetic resonance imaging (fMRI) to measure the surface area A of retinotopic maps V1, V2, V3, and V4. Across observers, λ is proportional to the surface area of V4 but is uncorrelated with the surface area of V1 to V3. The proportional relationship of λ to area of V4 indicates conservation of cortical crowding distance across individuals: letters can be recognized if they are spaced by at least 1.4 mm on the V4 map, irrespective of map size and psychophysical crowding distance. We conclude that the size of V4 predicts the spacing limit of visual perception.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.