缺氧敏感的智能水凝胶生物传感器,用于肌肉缺血再生的不同机械和电信号

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sunu Hangma Subba, Songling Jiang, Eun‐Jung Jin, Sung Young Park
{"title":"缺氧敏感的智能水凝胶生物传感器,用于肌肉缺血再生的不同机械和电信号","authors":"Sunu Hangma Subba, Songling Jiang, Eun‐Jung Jin, Sung Young Park","doi":"10.1002/adfm.202417935","DOIUrl":null,"url":null,"abstract":"A hypoxia‐specific diselenide‐crosslinked polymer dot (PD) nanoparticles‐based pyrogallol‐modified hydrogel (HS‐PD hydrogel) is developed for the facile monitoring of muscle ischemia recovery through multifaceted mechanical, electrical, and optical modulation. The ischemia environment‐sensitive conductive hydrogel exploits the specific cleavage of diselenide bonds induced by overexpressed reactive oxygen species (ROS), regulating fluorescence “on/off” activation, and subsequently modifies the microstructural morphology of the matrix. The HS‐PD hydrogel utilizes the oxidizing properties of pyrogallol to modulate its electroconductivity (ΔR decreased by ≈78.1%) and mechanophysical properties under normoxic conditions while enabling naked‐eye detection via visible color changes. Moreover, in vitro mechanophysical and electrical changes are evidenced by an increase in stretchability and compression modulus, alongside reduced electrical resistivity under normoxic conditions, as confirmed using C2C12 and 3T3‐L1 cell models. Additionally, in vitro gene expression analysis shows significant downregulation of <jats:italic>SOD2</jats:italic>, <jats:italic>Hif‐1α</jats:italic>, and <jats:italic>MuRF‐1</jats:italic> genes associated with muscle degradation, indicating enhanced ROS scavenging and potential oxygen normalization in ischemic regions. In vivo studies using a murine model of femoral artery ligation show a reduced inflammatory response, muscle fiber hypertrophy, and increased regenerative capacity in ischemic tissues. These findings highlight the potential of hydrogels in muscle regeneration and therapeutic applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"24 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypoxia‐Sensitive Smart Hydrogel Biosensor for Distinct Mechanical and Electrical Signals with Muscle Ischemia Regeneration\",\"authors\":\"Sunu Hangma Subba, Songling Jiang, Eun‐Jung Jin, Sung Young Park\",\"doi\":\"10.1002/adfm.202417935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hypoxia‐specific diselenide‐crosslinked polymer dot (PD) nanoparticles‐based pyrogallol‐modified hydrogel (HS‐PD hydrogel) is developed for the facile monitoring of muscle ischemia recovery through multifaceted mechanical, electrical, and optical modulation. The ischemia environment‐sensitive conductive hydrogel exploits the specific cleavage of diselenide bonds induced by overexpressed reactive oxygen species (ROS), regulating fluorescence “on/off” activation, and subsequently modifies the microstructural morphology of the matrix. The HS‐PD hydrogel utilizes the oxidizing properties of pyrogallol to modulate its electroconductivity (ΔR decreased by ≈78.1%) and mechanophysical properties under normoxic conditions while enabling naked‐eye detection via visible color changes. Moreover, in vitro mechanophysical and electrical changes are evidenced by an increase in stretchability and compression modulus, alongside reduced electrical resistivity under normoxic conditions, as confirmed using C2C12 and 3T3‐L1 cell models. Additionally, in vitro gene expression analysis shows significant downregulation of <jats:italic>SOD2</jats:italic>, <jats:italic>Hif‐1α</jats:italic>, and <jats:italic>MuRF‐1</jats:italic> genes associated with muscle degradation, indicating enhanced ROS scavenging and potential oxygen normalization in ischemic regions. In vivo studies using a murine model of femoral artery ligation show a reduced inflammatory response, muscle fiber hypertrophy, and increased regenerative capacity in ischemic tissues. These findings highlight the potential of hydrogels in muscle regeneration and therapeutic applications.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202417935\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417935","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了一种基于焦耳酚改性水凝胶(HS-PD hydrogel)的缺氧特异性二硒化交联聚合物点(PD)纳米粒子,可通过多方面的机械、电气和光学调制来方便地监测肌肉缺血恢复情况。这种对缺血环境敏感的导电水凝胶利用过量表达的活性氧(ROS)诱导的二硒化键的特异性裂解,调节荧光的 "开/关 "激活,随后改变基质的微观结构形态。HS-PD水凝胶利用焦枯醇的氧化特性调节了其在常氧条件下的电导率(ΔR降低了≈78.1%)和机械物理特性,同时还能通过可见的颜色变化进行肉眼检测。此外,体外机械物理和电学变化表现为拉伸性和压缩模量的增加,以及常氧条件下电阻率的降低,这一点已通过 C2C12 和 3T3-L1 细胞模型得到证实。此外,体外基因表达分析表明,与肌肉降解相关的 SOD2、Hif-1α 和 MuRF-1 基因明显下调,这表明缺血区域的 ROS 清除能力增强,潜在的氧正常化能力增强。使用小鼠股动脉结扎模型进行的体内研究表明,缺血组织的炎症反应减轻、肌纤维肥大、再生能力增强。这些发现凸显了水凝胶在肌肉再生和治疗应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypoxia‐Sensitive Smart Hydrogel Biosensor for Distinct Mechanical and Electrical Signals with Muscle Ischemia Regeneration
A hypoxia‐specific diselenide‐crosslinked polymer dot (PD) nanoparticles‐based pyrogallol‐modified hydrogel (HS‐PD hydrogel) is developed for the facile monitoring of muscle ischemia recovery through multifaceted mechanical, electrical, and optical modulation. The ischemia environment‐sensitive conductive hydrogel exploits the specific cleavage of diselenide bonds induced by overexpressed reactive oxygen species (ROS), regulating fluorescence “on/off” activation, and subsequently modifies the microstructural morphology of the matrix. The HS‐PD hydrogel utilizes the oxidizing properties of pyrogallol to modulate its electroconductivity (ΔR decreased by ≈78.1%) and mechanophysical properties under normoxic conditions while enabling naked‐eye detection via visible color changes. Moreover, in vitro mechanophysical and electrical changes are evidenced by an increase in stretchability and compression modulus, alongside reduced electrical resistivity under normoxic conditions, as confirmed using C2C12 and 3T3‐L1 cell models. Additionally, in vitro gene expression analysis shows significant downregulation of SOD2, Hif‐1α, and MuRF‐1 genes associated with muscle degradation, indicating enhanced ROS scavenging and potential oxygen normalization in ischemic regions. In vivo studies using a murine model of femoral artery ligation show a reduced inflammatory response, muscle fiber hypertrophy, and increased regenerative capacity in ischemic tissues. These findings highlight the potential of hydrogels in muscle regeneration and therapeutic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信