用阴离子-梯度-无序界面相激活禁笼-离子-扩散,用于超稳定银银石基全固态锂金属电池

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-24 DOI:10.1002/smll.202500764
Ruiqi Guo, Yuxi Zhong, Peng Yu, Kaidi Kang, Songjie Li, Zhifan Hu, Xinran Wang, Chuan Wu, Ying Bai
{"title":"用阴离子-梯度-无序界面相激活禁笼-离子-扩散,用于超稳定银银石基全固态锂金属电池","authors":"Ruiqi Guo, Yuxi Zhong, Peng Yu, Kaidi Kang, Songjie Li, Zhifan Hu, Xinran Wang, Chuan Wu, Ying Bai","doi":"10.1002/smll.202500764","DOIUrl":null,"url":null,"abstract":"Lithium argyrodite sulfide electrolytes show great potential in all‐solid‐state lithium metal batteries (ASSLMBs) due to their high ionic conductivity and ductile feature, among which Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>I presents the most promising stability with Li metals but a low ionic conductivity (≈10<jats:sup>−6</jats:sup> S cm<jats:sup>−1</jats:sup>). It is because of the absence of S<jats:sup>2−</jats:sup>/I<jats:sup>−</jats:sup> disorder and thus the forbidden Li<jats:sup>+</jats:sup> ion intercage migrations. Herein, argyrodite particles with iodine‐gradient‐disordered interphase were designed that opened up the proscribed Li<jats:sup>+</jats:sup> ion intercage jumps and synergistically blocked the interfacial electron leakage for ultrastable ASSLMBs. Density functional theory calculations and <jats:sup>7</jats:sup>Li spin‐lattice relaxation NMR experiments prove the activated and even accelerated intercage Li<jats:sup>+</jats:sup> conduction with reduced migration barrier. Electrostatic potential profiles also certify the electron transition‐shielding interphase as the origin of parasitic‐reaction‐free Li interface. Gathered evidence of, other characterizations demonstrated the combination of high ionic conductivities (cold press 5.7 mS cm<jats:sup>−1</jats:sup>), low electron conductivity (1.5×10<jats:sup>−8</jats:sup> S cm<jats:sup>−1</jats:sup>), improved critical current density (1.65 mA cm<jats:sup>−2</jats:sup>), excellent stability with Li metal (over 1,500 h) and prominent cycling and rate performance. This study provides insights on novel interphase design to fulfill the cooperatively high ionic conductivity and high Li metal‐compatibility for high‐performance ASSLMBs.","PeriodicalId":228,"journal":{"name":"Small","volume":"71 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activating Forbidden Intercage‐Ionic‐Diffusivity by Anion‐Gradient‐Disordered Interphase for Ultrastable Argyrodite‐Based All‐Solid‐State Lithium Metal Batteries\",\"authors\":\"Ruiqi Guo, Yuxi Zhong, Peng Yu, Kaidi Kang, Songjie Li, Zhifan Hu, Xinran Wang, Chuan Wu, Ying Bai\",\"doi\":\"10.1002/smll.202500764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium argyrodite sulfide electrolytes show great potential in all‐solid‐state lithium metal batteries (ASSLMBs) due to their high ionic conductivity and ductile feature, among which Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>I presents the most promising stability with Li metals but a low ionic conductivity (≈10<jats:sup>−6</jats:sup> S cm<jats:sup>−1</jats:sup>). It is because of the absence of S<jats:sup>2−</jats:sup>/I<jats:sup>−</jats:sup> disorder and thus the forbidden Li<jats:sup>+</jats:sup> ion intercage migrations. Herein, argyrodite particles with iodine‐gradient‐disordered interphase were designed that opened up the proscribed Li<jats:sup>+</jats:sup> ion intercage jumps and synergistically blocked the interfacial electron leakage for ultrastable ASSLMBs. Density functional theory calculations and <jats:sup>7</jats:sup>Li spin‐lattice relaxation NMR experiments prove the activated and even accelerated intercage Li<jats:sup>+</jats:sup> conduction with reduced migration barrier. Electrostatic potential profiles also certify the electron transition‐shielding interphase as the origin of parasitic‐reaction‐free Li interface. Gathered evidence of, other characterizations demonstrated the combination of high ionic conductivities (cold press 5.7 mS cm<jats:sup>−1</jats:sup>), low electron conductivity (1.5×10<jats:sup>−8</jats:sup> S cm<jats:sup>−1</jats:sup>), improved critical current density (1.65 mA cm<jats:sup>−2</jats:sup>), excellent stability with Li metal (over 1,500 h) and prominent cycling and rate performance. This study provides insights on novel interphase design to fulfill the cooperatively high ionic conductivity and high Li metal‐compatibility for high‐performance ASSLMBs.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202500764\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202500764","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

银晶锂硫化物电解质由于其高离子电导率和延展性,在全固态锂金属电池(asslmb)中表现出很大的潜力,其中Li6PS5I具有较低的离子电导率(≈10−6 S cm−1),但与锂金属的稳定性最好。这是因为没有S2 - /I -无序,因此禁止Li+离子在笼间迁移。本文设计了具有碘-梯度-无序界面相的银镁石颗粒,打开了被禁止的Li+离子笼间跳跃,并协同阻止了超稳定asslmb的界面电子泄漏。密度泛函理论计算和7Li自旋晶格弛豫核磁共振实验证明,在迁移势垒降低的情况下,笼间Li+的传导被激活甚至加速。静电电位曲线也证明了电子跃迁屏蔽界面是寄生无反应Li界面的起源。收集到的其他表征证据表明,该材料具有高离子电导率(冷压5.7 mS cm−1)、低电子电导率(1.5×10−8 S cm−1)、提高的临界电流密度(1.65 mA cm−2)、优异的与锂金属的稳定性(超过1500 h)以及突出的循环和速率性能。该研究为实现高性能asslmb的高离子电导率和高锂金属相容性提供了新的界面设计思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activating Forbidden Intercage‐Ionic‐Diffusivity by Anion‐Gradient‐Disordered Interphase for Ultrastable Argyrodite‐Based All‐Solid‐State Lithium Metal Batteries
Lithium argyrodite sulfide electrolytes show great potential in all‐solid‐state lithium metal batteries (ASSLMBs) due to their high ionic conductivity and ductile feature, among which Li6PS5I presents the most promising stability with Li metals but a low ionic conductivity (≈10−6 S cm−1). It is because of the absence of S2−/I disorder and thus the forbidden Li+ ion intercage migrations. Herein, argyrodite particles with iodine‐gradient‐disordered interphase were designed that opened up the proscribed Li+ ion intercage jumps and synergistically blocked the interfacial electron leakage for ultrastable ASSLMBs. Density functional theory calculations and 7Li spin‐lattice relaxation NMR experiments prove the activated and even accelerated intercage Li+ conduction with reduced migration barrier. Electrostatic potential profiles also certify the electron transition‐shielding interphase as the origin of parasitic‐reaction‐free Li interface. Gathered evidence of, other characterizations demonstrated the combination of high ionic conductivities (cold press 5.7 mS cm−1), low electron conductivity (1.5×10−8 S cm−1), improved critical current density (1.65 mA cm−2), excellent stability with Li metal (over 1,500 h) and prominent cycling and rate performance. This study provides insights on novel interphase design to fulfill the cooperatively high ionic conductivity and high Li metal‐compatibility for high‐performance ASSLMBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信