氮掺杂石墨烯包裹 Fe2N,用于增强硝酸盐到氨的电催化转化

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yating Chen, Taiquan Rao, Jiayu Zhan, Lu-Hua Zhang, Fengshou Yu
{"title":"氮掺杂石墨烯包裹 Fe2N,用于增强硝酸盐到氨的电催化转化","authors":"Yating Chen, Taiquan Rao, Jiayu Zhan, Lu-Hua Zhang, Fengshou Yu","doi":"10.1039/d5cc01270h","DOIUrl":null,"url":null,"abstract":"This study reports the synthesis of a nitrogen-doped graphene encapsulating iron nitride (Fe<small><sub>2</sub></small>N@NC) electrocatalyst with outstanding activity for NO<small><sub>3</sub></small>RR, achieving excellent Faradaic efficiency (FE) for NH<small><sub>3</sub></small> of 96.11% and high NH<small><sub>3</sub></small> yield rate of 618.35 mmol h<small><sup>−1</sup></small> g<small><sub>cat</sub></small>-1 at -0.5 V versus the reversible hydrogen electrode (RHE). Furthermore, the catalyst maintains a FE exceeding 90% across a broad range of potentials (from -0.3 to -0.7 V vs. RHE) and 85% across a wide range of concentrations (from 0.001 M to 0.5 M). Electron transfer between Fe and the support results in the formation of electron-deficient Fe. The experimental results demonstrated that electron-deficient Fe enhances the adsorption of NO<small><sub>3</sub></small><small><sup>-</sup></small>. Furthermore, doping with Fe effectively utilizes *H radicals and inhibits the hydrogen evolution reaction (HER), thereby enhancing the activity of NO<small><sub>3</sub></small>RR.","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":"1 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen-Doped Graphene Encapsulating Fe2N for Enhanced Electrocatalytic Conversion of Nitrate to Ammonia\",\"authors\":\"Yating Chen, Taiquan Rao, Jiayu Zhan, Lu-Hua Zhang, Fengshou Yu\",\"doi\":\"10.1039/d5cc01270h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study reports the synthesis of a nitrogen-doped graphene encapsulating iron nitride (Fe<small><sub>2</sub></small>N@NC) electrocatalyst with outstanding activity for NO<small><sub>3</sub></small>RR, achieving excellent Faradaic efficiency (FE) for NH<small><sub>3</sub></small> of 96.11% and high NH<small><sub>3</sub></small> yield rate of 618.35 mmol h<small><sup>−1</sup></small> g<small><sub>cat</sub></small>-1 at -0.5 V versus the reversible hydrogen electrode (RHE). Furthermore, the catalyst maintains a FE exceeding 90% across a broad range of potentials (from -0.3 to -0.7 V vs. RHE) and 85% across a wide range of concentrations (from 0.001 M to 0.5 M). Electron transfer between Fe and the support results in the formation of electron-deficient Fe. The experimental results demonstrated that electron-deficient Fe enhances the adsorption of NO<small><sub>3</sub></small><small><sup>-</sup></small>. Furthermore, doping with Fe effectively utilizes *H radicals and inhibits the hydrogen evolution reaction (HER), thereby enhancing the activity of NO<small><sub>3</sub></small>RR.\",\"PeriodicalId\":67,\"journal\":{\"name\":\"Chemical Communications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5cc01270h\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cc01270h","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究报道了一种氮掺杂石墨烯包封氮化铁(Fe2N@NC)电催化剂的合成,该催化剂对NO3RR具有优异的活性,与可逆氢电极(RHE)相比,在-0.5 V下,NH3的法拉第效率(FE)达到96.11%,NH3的产率达到618.35 mmol h−1 gcat-1。此外,该催化剂在较宽的电位范围内(从-0.3到-0.7 V vs. RHE)保持超过90%的FE,在较宽的浓度范围内(从0.001 M到0.5 M)保持超过85%的FE。FE和载体之间的电子转移导致了缺电子FE的形成。实验结果表明,缺电子铁增强了对NO3-的吸附。此外,Fe的掺杂有效地利用了*H自由基,抑制了析氢反应(HER),从而增强了NO3RR的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nitrogen-Doped Graphene Encapsulating Fe2N for Enhanced Electrocatalytic Conversion of Nitrate to Ammonia
This study reports the synthesis of a nitrogen-doped graphene encapsulating iron nitride (Fe2N@NC) electrocatalyst with outstanding activity for NO3RR, achieving excellent Faradaic efficiency (FE) for NH3 of 96.11% and high NH3 yield rate of 618.35 mmol h−1 gcat-1 at -0.5 V versus the reversible hydrogen electrode (RHE). Furthermore, the catalyst maintains a FE exceeding 90% across a broad range of potentials (from -0.3 to -0.7 V vs. RHE) and 85% across a wide range of concentrations (from 0.001 M to 0.5 M). Electron transfer between Fe and the support results in the formation of electron-deficient Fe. The experimental results demonstrated that electron-deficient Fe enhances the adsorption of NO3-. Furthermore, doping with Fe effectively utilizes *H radicals and inhibits the hydrogen evolution reaction (HER), thereby enhancing the activity of NO3RR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Communications
Chemical Communications 化学-化学综合
CiteScore
8.60
自引率
4.10%
发文量
2705
审稿时长
1.4 months
期刊介绍: ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信