Menno van den Hout, Ruben S. Luís, Benjamin J. Puttnam, Giammarco Di Sciullo, Tetsuya Hayashi, Ayumi Inoue, Takuji Nagashima, Simon Gross, Andrew Ross-Adams, Michael J. Withford, Lauren Dallachiesa, Nicolas K. Fontaine, Roland Ryf, Mikael Mazur, Haoshuo Chen, Jun Sakaguchi, Cristian Antonelli, Chigo Okonkwo, Hideaki Furukawa, Georg Rademacher
{"title":"利用标准包层直径耦合纤芯多芯光纤实现大容量光传输的巅峰之作","authors":"Menno van den Hout, Ruben S. Luís, Benjamin J. Puttnam, Giammarco Di Sciullo, Tetsuya Hayashi, Ayumi Inoue, Takuji Nagashima, Simon Gross, Andrew Ross-Adams, Michael J. Withford, Lauren Dallachiesa, Nicolas K. Fontaine, Roland Ryf, Mikael Mazur, Haoshuo Chen, Jun Sakaguchi, Cristian Antonelli, Chigo Okonkwo, Hideaki Furukawa, Georg Rademacher","doi":"10.1038/s41467-025-59037-1","DOIUrl":null,"url":null,"abstract":"<p>Data rates in optical networks have grown exponentially in recent decades and are expected to grow beyond the fundamental limits of current standard single-mode fiber networks. As such, novel transmission technologies are required to sustain this growth, and space-division multiplexing provides the most promising candidate to scale the capacity of optical networks in a way that is also cost-effective. For fiber fabrication and deployment, it is highly beneficial to use fibers with a standard cladding diameter. Here we demonstrate petabit-per-second-class data transmission using a space-division multiplexing fiber that approaches the limits of spatial multiplexing whilst minimizing the required signal processing complexity. This is done by designing and fabricating a low-loss 19-core multi-core fiber with randomly-coupled cores, a standard cladding diameter, and supporting a wideband wavelength-division multiplexed signal. The resulting data rate of 1.7 petabit/s is the highest reported amongst standard cladding diameter multi-core fibers and is approximately more than an order of magnitude higher than is supported by currently deployed single-mode fibers, paving the way for next-generation ultra-fast optical transmission networks.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"70 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reaching the pinnacle of high-capacity optical transmission using a standard cladding diameter coupled-core multi-core fiber\",\"authors\":\"Menno van den Hout, Ruben S. Luís, Benjamin J. Puttnam, Giammarco Di Sciullo, Tetsuya Hayashi, Ayumi Inoue, Takuji Nagashima, Simon Gross, Andrew Ross-Adams, Michael J. Withford, Lauren Dallachiesa, Nicolas K. Fontaine, Roland Ryf, Mikael Mazur, Haoshuo Chen, Jun Sakaguchi, Cristian Antonelli, Chigo Okonkwo, Hideaki Furukawa, Georg Rademacher\",\"doi\":\"10.1038/s41467-025-59037-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Data rates in optical networks have grown exponentially in recent decades and are expected to grow beyond the fundamental limits of current standard single-mode fiber networks. As such, novel transmission technologies are required to sustain this growth, and space-division multiplexing provides the most promising candidate to scale the capacity of optical networks in a way that is also cost-effective. For fiber fabrication and deployment, it is highly beneficial to use fibers with a standard cladding diameter. Here we demonstrate petabit-per-second-class data transmission using a space-division multiplexing fiber that approaches the limits of spatial multiplexing whilst minimizing the required signal processing complexity. This is done by designing and fabricating a low-loss 19-core multi-core fiber with randomly-coupled cores, a standard cladding diameter, and supporting a wideband wavelength-division multiplexed signal. The resulting data rate of 1.7 petabit/s is the highest reported amongst standard cladding diameter multi-core fibers and is approximately more than an order of magnitude higher than is supported by currently deployed single-mode fibers, paving the way for next-generation ultra-fast optical transmission networks.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59037-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59037-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Reaching the pinnacle of high-capacity optical transmission using a standard cladding diameter coupled-core multi-core fiber
Data rates in optical networks have grown exponentially in recent decades and are expected to grow beyond the fundamental limits of current standard single-mode fiber networks. As such, novel transmission technologies are required to sustain this growth, and space-division multiplexing provides the most promising candidate to scale the capacity of optical networks in a way that is also cost-effective. For fiber fabrication and deployment, it is highly beneficial to use fibers with a standard cladding diameter. Here we demonstrate petabit-per-second-class data transmission using a space-division multiplexing fiber that approaches the limits of spatial multiplexing whilst minimizing the required signal processing complexity. This is done by designing and fabricating a low-loss 19-core multi-core fiber with randomly-coupled cores, a standard cladding diameter, and supporting a wideband wavelength-division multiplexed signal. The resulting data rate of 1.7 petabit/s is the highest reported amongst standard cladding diameter multi-core fibers and is approximately more than an order of magnitude higher than is supported by currently deployed single-mode fibers, paving the way for next-generation ultra-fast optical transmission networks.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.