利用等离子体-激子能量交换制备效率为19.5%的柔性有机太阳能电池

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jing-De Chen, Hao Ren, Feng-Ming Xie, Jia-Liang Zhang, Hao-Ze Li, Abdul Sameeu Ibupoto, Ye-Fang Zhang, Yan-Qing Li, Jian-Xin Tang
{"title":"利用等离子体-激子能量交换制备效率为19.5%的柔性有机太阳能电池","authors":"Jing-De Chen, Hao Ren, Feng-Ming Xie, Jia-Liang Zhang, Hao-Ze Li, Abdul Sameeu Ibupoto, Ye-Fang Zhang, Yan-Qing Li, Jian-Xin Tang","doi":"10.1038/s41467-025-59286-0","DOIUrl":null,"url":null,"abstract":"<p>The plasmonic effects have unlocked remarkable advancements in modern optoelectronics, enabling enhanced light-matter interactions for applications ranging from sensing to photovoltaics. However, the nonradiative damping of plasmonic effects causes parasitic absorption which limits the light-utilization efficiency of optoelectronics, particularly for photovoltaic cells. Herein, we propose a plasmon energy recycling scheme consisting of green fluorophore (BCzBN) and nickel oxide to compensate for the plasmon energy loss. The plasmons trapped in silver nanowire (AgNW) electrodes are coupled to green emission through plasmon-exciton energy exchange. Backward electron and energy transfer are inhibited due to the spectral mismatch and energy level offset. The optically enhanced flexible AgNW electrode exhibits an improvement of 10.74% in transmittance, yielding flexible organic solar cells with an efficiency of 19.51% and a certified value of 18.69%. This innovative strategy provides a pathway for overcoming plasmon energy losses in plasmonic optoelectronics, opening horizons for highly efficient flexible photovoltaics and plasmonic devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"13 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing plasmon-exciton energy exchange for flexible organic solar cells with efficiency of 19.5%\",\"authors\":\"Jing-De Chen, Hao Ren, Feng-Ming Xie, Jia-Liang Zhang, Hao-Ze Li, Abdul Sameeu Ibupoto, Ye-Fang Zhang, Yan-Qing Li, Jian-Xin Tang\",\"doi\":\"10.1038/s41467-025-59286-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The plasmonic effects have unlocked remarkable advancements in modern optoelectronics, enabling enhanced light-matter interactions for applications ranging from sensing to photovoltaics. However, the nonradiative damping of plasmonic effects causes parasitic absorption which limits the light-utilization efficiency of optoelectronics, particularly for photovoltaic cells. Herein, we propose a plasmon energy recycling scheme consisting of green fluorophore (BCzBN) and nickel oxide to compensate for the plasmon energy loss. The plasmons trapped in silver nanowire (AgNW) electrodes are coupled to green emission through plasmon-exciton energy exchange. Backward electron and energy transfer are inhibited due to the spectral mismatch and energy level offset. The optically enhanced flexible AgNW electrode exhibits an improvement of 10.74% in transmittance, yielding flexible organic solar cells with an efficiency of 19.51% and a certified value of 18.69%. This innovative strategy provides a pathway for overcoming plasmon energy losses in plasmonic optoelectronics, opening horizons for highly efficient flexible photovoltaics and plasmonic devices.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59286-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59286-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

等离子体效应开启了现代光电子学的显著进步,增强了光-物质相互作用,应用范围从传感到光伏。然而,等离子体效应的非辐射阻尼会导致寄生吸收,从而限制了光电子器件,特别是光伏电池的光利用效率。在此,我们提出了一种由绿色荧光团(BCzBN)和氧化镍组成的等离子体能量回收方案来补偿等离子体能量损失。捕获在银纳米线(AgNW)电极中的等离子体激子通过等离子体激子能量交换与绿色发射耦合。由于光谱失配和能级偏移,电子和能量的反向转移受到抑制。光增强柔性AgNW电极的透过率提高了10.74%,得到的柔性太阳能电池的效率为19.51%,认证值为18.69%。这一创新策略为克服等离子体光电子学中的等离子体能量损失提供了一条途径,为高效柔性光伏和等离子体器件开辟了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harnessing plasmon-exciton energy exchange for flexible organic solar cells with efficiency of 19.5%

Harnessing plasmon-exciton energy exchange for flexible organic solar cells with efficiency of 19.5%

The plasmonic effects have unlocked remarkable advancements in modern optoelectronics, enabling enhanced light-matter interactions for applications ranging from sensing to photovoltaics. However, the nonradiative damping of plasmonic effects causes parasitic absorption which limits the light-utilization efficiency of optoelectronics, particularly for photovoltaic cells. Herein, we propose a plasmon energy recycling scheme consisting of green fluorophore (BCzBN) and nickel oxide to compensate for the plasmon energy loss. The plasmons trapped in silver nanowire (AgNW) electrodes are coupled to green emission through plasmon-exciton energy exchange. Backward electron and energy transfer are inhibited due to the spectral mismatch and energy level offset. The optically enhanced flexible AgNW electrode exhibits an improvement of 10.74% in transmittance, yielding flexible organic solar cells with an efficiency of 19.51% and a certified value of 18.69%. This innovative strategy provides a pathway for overcoming plasmon energy losses in plasmonic optoelectronics, opening horizons for highly efficient flexible photovoltaics and plasmonic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信