热胁迫引发HYL1核定位增强,调控植物miRNA生物发生和耐热性

Yiming Cao, Jiaxin Zhang, Zhong Zhao, Guiliang Tang, Jun Yan
{"title":"热胁迫引发HYL1核定位增强,调控植物miRNA生物发生和耐热性","authors":"Yiming Cao, Jiaxin Zhang, Zhong Zhao, Guiliang Tang, Jun Yan","doi":"10.1093/plcell/koaf092","DOIUrl":null,"url":null,"abstract":"Plants have evolved a complex regulatory network to cope with heat stress (HS), which includes microRNAs (miRNAs). However, the roles of the entire miRNA biogenesis machinery in HS responses remain unclear. Here, we show that HS induces the majority of miRNAs primarily through the enhanced nuclear localization of HYPONASTIC LEAVES 1 (HYL1), rather than by upregulating MIR gene transcription in Arabidopsis (Arabidopsis thaliana). Disruption of miRNA biogenesis increases plant susceptibility to HS. We also demonstrate that HYL1 phosphorylation modulates its nuclear localization during HS, which is critical for miRNA induction and thermotolerance. MAP KINASE3 (MPK3) phosphorylates and stabilizes the phosphatase C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 (CPL1), while CPL1 inhibits MPK3 activity, creating a feedback loop that regulates HYL1 phosphorylation. Disruption of MPK3 function results in increased nuclear HYL1 levels and miRNA production, conferring enhanced HS tolerance to mpk3 mutants. These findings reveal a mechanism by which plants enhance miRNA biogenesis during HS, offering insights into the regulatory networks that govern plant thermotolerance.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat stress triggers enhanced nuclear localization of HYL1 to regulate miRNA biogenesis and thermotolerance in plants\",\"authors\":\"Yiming Cao, Jiaxin Zhang, Zhong Zhao, Guiliang Tang, Jun Yan\",\"doi\":\"10.1093/plcell/koaf092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plants have evolved a complex regulatory network to cope with heat stress (HS), which includes microRNAs (miRNAs). However, the roles of the entire miRNA biogenesis machinery in HS responses remain unclear. Here, we show that HS induces the majority of miRNAs primarily through the enhanced nuclear localization of HYPONASTIC LEAVES 1 (HYL1), rather than by upregulating MIR gene transcription in Arabidopsis (Arabidopsis thaliana). Disruption of miRNA biogenesis increases plant susceptibility to HS. We also demonstrate that HYL1 phosphorylation modulates its nuclear localization during HS, which is critical for miRNA induction and thermotolerance. MAP KINASE3 (MPK3) phosphorylates and stabilizes the phosphatase C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 (CPL1), while CPL1 inhibits MPK3 activity, creating a feedback loop that regulates HYL1 phosphorylation. Disruption of MPK3 function results in increased nuclear HYL1 levels and miRNA production, conferring enhanced HS tolerance to mpk3 mutants. These findings reveal a mechanism by which plants enhance miRNA biogenesis during HS, offering insights into the regulatory networks that govern plant thermotolerance.\",\"PeriodicalId\":501012,\"journal\":{\"name\":\"The Plant Cell\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koaf092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

植物已经进化出一个复杂的调控网络来应对热应激(HS),其中包括microRNAs (miRNAs)。然而,整个miRNA生物发生机制在HS反应中的作用仍不清楚。在这里,我们发现HS主要通过增强拟南芥中HYPONASTIC LEAVES 1 (HYL1)的核定位来诱导大多数miRNAs,而不是通过上调MIR基因的转录。miRNA生物发生的中断增加了植物对HS的易感性。我们还证明,HYL1磷酸化调节了HS过程中其核定位,这对miRNA诱导和耐热性至关重要。mapkinase3 (MPK3)磷酸化并稳定磷酸酶c -末端域磷酸酶样1 (CPL1),而CPL1抑制MPK3活性,形成调节HYL1磷酸化的反馈回路。MPK3功能的破坏导致核HYL1水平和miRNA产生的增加,从而增强了HS对MPK3突变体的耐受性。这些发现揭示了植物在高温胁迫过程中增强miRNA生物发生的机制,为了解植物耐热性的调控网络提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat stress triggers enhanced nuclear localization of HYL1 to regulate miRNA biogenesis and thermotolerance in plants
Plants have evolved a complex regulatory network to cope with heat stress (HS), which includes microRNAs (miRNAs). However, the roles of the entire miRNA biogenesis machinery in HS responses remain unclear. Here, we show that HS induces the majority of miRNAs primarily through the enhanced nuclear localization of HYPONASTIC LEAVES 1 (HYL1), rather than by upregulating MIR gene transcription in Arabidopsis (Arabidopsis thaliana). Disruption of miRNA biogenesis increases plant susceptibility to HS. We also demonstrate that HYL1 phosphorylation modulates its nuclear localization during HS, which is critical for miRNA induction and thermotolerance. MAP KINASE3 (MPK3) phosphorylates and stabilizes the phosphatase C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 (CPL1), while CPL1 inhibits MPK3 activity, creating a feedback loop that regulates HYL1 phosphorylation. Disruption of MPK3 function results in increased nuclear HYL1 levels and miRNA production, conferring enhanced HS tolerance to mpk3 mutants. These findings reveal a mechanism by which plants enhance miRNA biogenesis during HS, offering insights into the regulatory networks that govern plant thermotolerance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信