自支撑NiCo2S4@Ce-NiFe LDH/CeO2纳米阵列电化学水分解

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Jun Yu, Nannan Zhang, Jie Li, Huiyu Sun, Xinyu Gu, Zhengying Wu, Tianpeng Liu, Yukou Du
{"title":"自支撑NiCo2S4@Ce-NiFe LDH/CeO2纳米阵列电化学水分解","authors":"Jun Yu, Nannan Zhang, Jie Li, Huiyu Sun, Xinyu Gu, Zhengying Wu, Tianpeng Liu, Yukou Du","doi":"10.1021/acs.inorgchem.5c00289","DOIUrl":null,"url":null,"abstract":"The design of high-performance OER catalysts is crucial for efficient electrochemical water splitting (EWS). Herein, a NiCo<sub>2</sub>S<sub>4</sub>@Ce-NiFe LDH/CeO<sub>2</sub> heterostructure nanoarray electrocatalyst with abundant oxygen defect sites is reported. The introduction of Ce species activates the lattice oxygen in the oxyhydroxides, inducing the transformation of the catalytic mechanism toward the lattice oxygen oxidation mechanism (LOM) pathway, bypassing the thermodynamic limitation of the adsorbate evolution mechanism (AEM), and strengthening the intrinsic activity of the material. Moreover, the reversible transitions between different oxidation states of Ce species and the high oxygen storage capacity of CeO<sub>2</sub> regulate the adsorption behavior of the reaction intermediates, allowing it to be easier for the material to enrich the oxygen-containing intermediates, thereby improving the adsorption kinetics. Accordingly, NiCo<sub>2</sub>S<sub>4</sub>@Ce-NiFe LDH/CeO<sub>2</sub> exhibits remarkable OER performance (η<sub>50</sub> = 226 mV, η<sub>100</sub> = 244 mV) and brilliant stability. Additionally, the presence of the CeO<sub>2</sub> protective layer inhibits the impact of Cl<sup>–</sup> and other pollutants in seawater, which enables NiCo<sub>2</sub>S<sub>4</sub>@Ce-NiFe LDH/CeO<sub>2</sub> to perform satisfactorily in seawater electrolysis, as well. This study offers a fresh perspective on the design of defect-rich OER catalysts.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"21 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Supported NiCo2S4@Ce-NiFe LDH/CeO2 Nanoarrays for Electrochemical Water Splitting\",\"authors\":\"Jun Yu, Nannan Zhang, Jie Li, Huiyu Sun, Xinyu Gu, Zhengying Wu, Tianpeng Liu, Yukou Du\",\"doi\":\"10.1021/acs.inorgchem.5c00289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of high-performance OER catalysts is crucial for efficient electrochemical water splitting (EWS). Herein, a NiCo<sub>2</sub>S<sub>4</sub>@Ce-NiFe LDH/CeO<sub>2</sub> heterostructure nanoarray electrocatalyst with abundant oxygen defect sites is reported. The introduction of Ce species activates the lattice oxygen in the oxyhydroxides, inducing the transformation of the catalytic mechanism toward the lattice oxygen oxidation mechanism (LOM) pathway, bypassing the thermodynamic limitation of the adsorbate evolution mechanism (AEM), and strengthening the intrinsic activity of the material. Moreover, the reversible transitions between different oxidation states of Ce species and the high oxygen storage capacity of CeO<sub>2</sub> regulate the adsorption behavior of the reaction intermediates, allowing it to be easier for the material to enrich the oxygen-containing intermediates, thereby improving the adsorption kinetics. Accordingly, NiCo<sub>2</sub>S<sub>4</sub>@Ce-NiFe LDH/CeO<sub>2</sub> exhibits remarkable OER performance (η<sub>50</sub> = 226 mV, η<sub>100</sub> = 244 mV) and brilliant stability. Additionally, the presence of the CeO<sub>2</sub> protective layer inhibits the impact of Cl<sup>–</sup> and other pollutants in seawater, which enables NiCo<sub>2</sub>S<sub>4</sub>@Ce-NiFe LDH/CeO<sub>2</sub> to perform satisfactorily in seawater electrolysis, as well. This study offers a fresh perspective on the design of defect-rich OER catalysts.\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.5c00289\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.5c00289","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

高性能OER催化剂的设计是实现高效电化学水分解的关键。本文报道了一种具有丰富氧缺陷位的NiCo2S4@Ce-NiFe LDH/CeO2异质结构纳米阵列电催化剂。Ce物质的引入激活了氢氧化物中的晶格氧,诱导催化机制向晶格氧氧化机制(LOM)途径转变,绕过了吸附质演化机制(AEM)的热力学限制,增强了材料的内在活性。此外,Ce的不同氧化态之间的可逆转变和CeO2的高储氧能力调节了反应中间体的吸附行为,使材料更容易富集含氧中间体,从而提高了吸附动力学。因此,NiCo2S4@Ce-NiFe LDH/CeO2具有优异的OER性能(η50 = 226 mV, η100 = 244 mV)和优异的稳定性。此外,CeO2保护层的存在抑制了海水中Cl -等污染物的影响,使得NiCo2S4@Ce-NiFe LDH/CeO2在海水电解中也能有令人满意的表现。本研究为高缺陷OER催化剂的设计提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-Supported NiCo2S4@Ce-NiFe LDH/CeO2 Nanoarrays for Electrochemical Water Splitting

Self-Supported NiCo2S4@Ce-NiFe LDH/CeO2 Nanoarrays for Electrochemical Water Splitting
The design of high-performance OER catalysts is crucial for efficient electrochemical water splitting (EWS). Herein, a NiCo2S4@Ce-NiFe LDH/CeO2 heterostructure nanoarray electrocatalyst with abundant oxygen defect sites is reported. The introduction of Ce species activates the lattice oxygen in the oxyhydroxides, inducing the transformation of the catalytic mechanism toward the lattice oxygen oxidation mechanism (LOM) pathway, bypassing the thermodynamic limitation of the adsorbate evolution mechanism (AEM), and strengthening the intrinsic activity of the material. Moreover, the reversible transitions between different oxidation states of Ce species and the high oxygen storage capacity of CeO2 regulate the adsorption behavior of the reaction intermediates, allowing it to be easier for the material to enrich the oxygen-containing intermediates, thereby improving the adsorption kinetics. Accordingly, NiCo2S4@Ce-NiFe LDH/CeO2 exhibits remarkable OER performance (η50 = 226 mV, η100 = 244 mV) and brilliant stability. Additionally, the presence of the CeO2 protective layer inhibits the impact of Cl and other pollutants in seawater, which enables NiCo2S4@Ce-NiFe LDH/CeO2 to perform satisfactorily in seawater electrolysis, as well. This study offers a fresh perspective on the design of defect-rich OER catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信