在无奇点理论中拓扑不变量和黑洞会发生什么?

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Jens Boos
{"title":"在无奇点理论中拓扑不变量和黑洞会发生什么?","authors":"Jens Boos","doi":"10.1103/physrevd.111.084063","DOIUrl":null,"url":null,"abstract":"Potentials arising in ultraviolet-completed field theories can be devoid of singularities, and hence render spacetimes simply connected. This challenges the notion of topological invariants considered in such scenarios. We explore the classical implications for (i) electrodynamics in flat spacetime, (ii) ultrarelativistic gyratonic solutions of weak-field gravity, and (iii) the Reissner-Nordström black hole in general relativity. In linear theories, regularity spoils the character of topological invariants and leads to radius-dependent Aharonov-Bohm phases, which are potentially observable for large winding numbers. In general relativity, the physics is richer: The electromagnetic field can be regular and maintain its usual topological invariants, and the resulting geometry can be interpreted as a Reissner-Nordström black hole with a spacetime region of coordinate radius ∼</a:mo>q</a:mi></a:mrow>2</a:mn></a:mrow></a:msup>/</a:mo>(</a:mo>G</a:mi>M</a:mi>)</a:mo></a:mrow></a:math> cut out. This guarantees the regularity of linear and quadratic curvature invariants (<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi mathvariant=\"script\">R</e:mi></e:math> and <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:msup><h:mi mathvariant=\"script\">R</h:mi><h:mn>2</h:mn></h:msup></h:math>), but does not resolve singularities in invariants such as <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:msup><k:mrow><k:mi mathvariant=\"script\">R</k:mi></k:mrow><k:mrow><k:mi>p</k:mi></k:mrow></k:msup><k:msup><k:mrow><k:mo>□</k:mo></k:mrow><k:mrow><k:mi>n</k:mi></k:mrow></k:msup><k:msup><k:mrow><k:mi mathvariant=\"script\">R</k:mi></k:mrow><k:mrow><k:mi>q</k:mi></k:mrow></k:msup></k:mrow></k:math>, reflected by conical or solid angle defects. This motivates that gravitational models beyond general relativity need to be considered. These connections between regularity (= UV properties of field theories) and topological invariants (= IR observables) may hence present an intriguing avenue to search for traces of new physics and identify promising modified gravity theories. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"20 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What happens to topological invariants and black holes in singularity-free theories?\",\"authors\":\"Jens Boos\",\"doi\":\"10.1103/physrevd.111.084063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Potentials arising in ultraviolet-completed field theories can be devoid of singularities, and hence render spacetimes simply connected. This challenges the notion of topological invariants considered in such scenarios. We explore the classical implications for (i) electrodynamics in flat spacetime, (ii) ultrarelativistic gyratonic solutions of weak-field gravity, and (iii) the Reissner-Nordström black hole in general relativity. In linear theories, regularity spoils the character of topological invariants and leads to radius-dependent Aharonov-Bohm phases, which are potentially observable for large winding numbers. In general relativity, the physics is richer: The electromagnetic field can be regular and maintain its usual topological invariants, and the resulting geometry can be interpreted as a Reissner-Nordström black hole with a spacetime region of coordinate radius ∼</a:mo>q</a:mi></a:mrow>2</a:mn></a:mrow></a:msup>/</a:mo>(</a:mo>G</a:mi>M</a:mi>)</a:mo></a:mrow></a:math> cut out. This guarantees the regularity of linear and quadratic curvature invariants (<e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mi mathvariant=\\\"script\\\">R</e:mi></e:math> and <h:math xmlns:h=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><h:msup><h:mi mathvariant=\\\"script\\\">R</h:mi><h:mn>2</h:mn></h:msup></h:math>), but does not resolve singularities in invariants such as <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mrow><k:msup><k:mrow><k:mi mathvariant=\\\"script\\\">R</k:mi></k:mrow><k:mrow><k:mi>p</k:mi></k:mrow></k:msup><k:msup><k:mrow><k:mo>□</k:mo></k:mrow><k:mrow><k:mi>n</k:mi></k:mrow></k:msup><k:msup><k:mrow><k:mi mathvariant=\\\"script\\\">R</k:mi></k:mrow><k:mrow><k:mi>q</k:mi></k:mrow></k:msup></k:mrow></k:math>, reflected by conical or solid angle defects. This motivates that gravitational models beyond general relativity need to be considered. These connections between regularity (= UV properties of field theories) and topological invariants (= IR observables) may hence present an intriguing avenue to search for traces of new physics and identify promising modified gravity theories. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.084063\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.084063","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在紫外完备场论中产生的势可以没有奇点,从而使时空单连通。这挑战了在这种情况下考虑的拓扑不变量的概念。我们探讨了(i)平坦时空中的电动力学,(ii)弱场引力的超相对论旋回解,以及(iii)广义相对论中的Reissner-Nordström黑洞的经典含义。在线性理论中,正则性破坏了拓扑不变量的特性,导致了半径相关的Aharonov-Bohm相,这在大圈数下是可能观察到的。在广义相对论中,物理学更为丰富:电磁场可以是规则的,并保持其通常的拓扑不变量,由此产生的几何形状可以解释为一个Reissner-Nordström黑洞,其坐标半径为q2/(GM)的时空区域被切断。这保证了线性和二次曲率不变量(R和R2)的正则性,但不能解决不变量(如Rp□nRq)的奇异性,由圆锥或立体角缺陷反映出来。这促使我们考虑广义相对论之外的引力模型。规律性(=场论的紫外特性)和拓扑不变量(=红外可观测值)之间的这些联系可能因此为寻找新物理的痕迹和确定有前途的修正引力理论提供了一条有趣的途径。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What happens to topological invariants and black holes in singularity-free theories?
Potentials arising in ultraviolet-completed field theories can be devoid of singularities, and hence render spacetimes simply connected. This challenges the notion of topological invariants considered in such scenarios. We explore the classical implications for (i) electrodynamics in flat spacetime, (ii) ultrarelativistic gyratonic solutions of weak-field gravity, and (iii) the Reissner-Nordström black hole in general relativity. In linear theories, regularity spoils the character of topological invariants and leads to radius-dependent Aharonov-Bohm phases, which are potentially observable for large winding numbers. In general relativity, the physics is richer: The electromagnetic field can be regular and maintain its usual topological invariants, and the resulting geometry can be interpreted as a Reissner-Nordström black hole with a spacetime region of coordinate radius ∼q2/(GM) cut out. This guarantees the regularity of linear and quadratic curvature invariants (R and R2), but does not resolve singularities in invariants such as RpnRq, reflected by conical or solid angle defects. This motivates that gravitational models beyond general relativity need to be considered. These connections between regularity (= UV properties of field theories) and topological invariants (= IR observables) may hence present an intriguing avenue to search for traces of new physics and identify promising modified gravity theories. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信