基于掺钇ZnFe2O4纳米纤维的正丁醇气体传感器

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Qingsong Luo, Yu Wan, Zhenxing Wang, Shuang Gao, Yan Chen, Changhao Feng
{"title":"基于掺钇ZnFe2O4纳米纤维的正丁醇气体传感器","authors":"Qingsong Luo, Yu Wan, Zhenxing Wang, Shuang Gao, Yan Chen, Changhao Feng","doi":"10.1016/j.jallcom.2025.180605","DOIUrl":null,"url":null,"abstract":"In the field of environmental monitoring, metal oxide semiconductor (MOS)-based gas sensors demonstrate significant advantages in detecting volatile organic compounds (VOCs) in ambient air. Gas sensors based on Yttrium-doped Zinc Ferrite nanofibers (Y-doped ZFO NFs) are fabricated via a conventional electrospinning method, with varying molar ratios of Y/Zn (0 at%, 2 at%, 4 at%, and 6 at%). Here, the doping of rare earth element Y significantly enhances the gas sensing performances. The structural and morphological information of both pristine ZFO and Y-doped ZFO NFs have been characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and Transmission electron microscope (TEM). Compared with pure ZFO, the 4 at% Y-doped ZFO (S3) exhibits a 4.46-fold higher response (R<sub>a</sub>/R<sub>g</sub> = 43.1) to 100 ppm n-butanol at 150℃ with a fast response time of 11<!-- --> <!-- -->s. Additionally, the Y-doped ZFO NFs gas sensors exhibit outstanding selectivity, remarkable long-term stability, and a low limit of detection (LOD) attributed to their small grain size, porous and rough morphology, abundant oxygen vacancies, and the formation of n-n heterojunctions.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"13 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excellent-performing gas sensor based on Yttrium-doped ZnFe2O4 nanofibers for detection of n-Butanol\",\"authors\":\"Qingsong Luo, Yu Wan, Zhenxing Wang, Shuang Gao, Yan Chen, Changhao Feng\",\"doi\":\"10.1016/j.jallcom.2025.180605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of environmental monitoring, metal oxide semiconductor (MOS)-based gas sensors demonstrate significant advantages in detecting volatile organic compounds (VOCs) in ambient air. Gas sensors based on Yttrium-doped Zinc Ferrite nanofibers (Y-doped ZFO NFs) are fabricated via a conventional electrospinning method, with varying molar ratios of Y/Zn (0 at%, 2 at%, 4 at%, and 6 at%). Here, the doping of rare earth element Y significantly enhances the gas sensing performances. The structural and morphological information of both pristine ZFO and Y-doped ZFO NFs have been characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and Transmission electron microscope (TEM). Compared with pure ZFO, the 4 at% Y-doped ZFO (S3) exhibits a 4.46-fold higher response (R<sub>a</sub>/R<sub>g</sub> = 43.1) to 100 ppm n-butanol at 150℃ with a fast response time of 11<!-- --> <!-- -->s. Additionally, the Y-doped ZFO NFs gas sensors exhibit outstanding selectivity, remarkable long-term stability, and a low limit of detection (LOD) attributed to their small grain size, porous and rough morphology, abundant oxygen vacancies, and the formation of n-n heterojunctions.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.180605\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.180605","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在环境监测领域,基于金属氧化物半导体(MOS)的气体传感器在检测环境空气中的挥发性有机化合物(VOC)方面具有显著优势。基于掺钇锌铁氧体纳米纤维(掺钇锌铁氧体纳米纤维)的气体传感器是通过传统的电纺丝方法,以不同的钇/锌摩尔比(0 at%、2 at%、4 at% 和 6 at%)制成的。其中,稀土元素 Y 的掺杂大大提高了气体传感性能。通过 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、X 射线光电子能谱 (XPS) 和透射电子显微镜 (TEM) 对原始 ZFO 和掺杂 Y 的 ZFO NF 的结构和形态信息进行了表征。与纯 ZFO 相比,掺杂 4% Y 的 ZFO(S3)在 150℃ 下对 100 ppm 正丁醇的响应速度提高了 4.46 倍(Ra/Rg = 43.1),响应时间缩短至 11 秒。此外,掺杂 Y 的 ZFO NFs 气体传感器具有出色的选择性、显著的长期稳定性和较低的检测限(LOD),这归功于其较小的晶粒尺寸、多孔和粗糙的形貌、丰富的氧空位以及 n-n 异质结的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Excellent-performing gas sensor based on Yttrium-doped ZnFe2O4 nanofibers for detection of n-Butanol
In the field of environmental monitoring, metal oxide semiconductor (MOS)-based gas sensors demonstrate significant advantages in detecting volatile organic compounds (VOCs) in ambient air. Gas sensors based on Yttrium-doped Zinc Ferrite nanofibers (Y-doped ZFO NFs) are fabricated via a conventional electrospinning method, with varying molar ratios of Y/Zn (0 at%, 2 at%, 4 at%, and 6 at%). Here, the doping of rare earth element Y significantly enhances the gas sensing performances. The structural and morphological information of both pristine ZFO and Y-doped ZFO NFs have been characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and Transmission electron microscope (TEM). Compared with pure ZFO, the 4 at% Y-doped ZFO (S3) exhibits a 4.46-fold higher response (Ra/Rg = 43.1) to 100 ppm n-butanol at 150℃ with a fast response time of 11 s. Additionally, the Y-doped ZFO NFs gas sensors exhibit outstanding selectivity, remarkable long-term stability, and a low limit of detection (LOD) attributed to their small grain size, porous and rough morphology, abundant oxygen vacancies, and the formation of n-n heterojunctions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信