{"title":"大分子构象熵机制的研究进展","authors":"Stephanie A. Wankowicz, James S. Fraser","doi":"10.1038/s41589-025-01879-3","DOIUrl":null,"url":null,"abstract":"<p>During protein folding, proteins transition from a disordered polymer into a globular structure, markedly decreasing their conformational degrees of freedom, leading to a substantial reduction in entropy. Nonetheless, folded proteins retain substantial entropy as they fluctuate between the conformations that make up their native state. This residual entropy contributes to crucial functions like binding and catalysis, supported by growing evidence primarily from NMR and simulation studies. Here, we propose three major ways that macromolecules use conformational entropy to perform their functions; first, prepaying entropic cost through ordering of the ground state; second, spatially redistributing entropy, in which a decrease in entropy in one area is reciprocated by an increase in entropy elsewhere; third, populating catalytically competent ensembles, in which conformational entropy within the enzymatic scaffold aids in lowering transition state barriers. We also provide our perspective on how solving the current challenge of structurally defining the ensembles encoding conformational entropy will lead to new possibilities for controlling binding, catalysis and allostery.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"22 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in uncovering the mechanisms of macromolecular conformational entropy\",\"authors\":\"Stephanie A. Wankowicz, James S. Fraser\",\"doi\":\"10.1038/s41589-025-01879-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>During protein folding, proteins transition from a disordered polymer into a globular structure, markedly decreasing their conformational degrees of freedom, leading to a substantial reduction in entropy. Nonetheless, folded proteins retain substantial entropy as they fluctuate between the conformations that make up their native state. This residual entropy contributes to crucial functions like binding and catalysis, supported by growing evidence primarily from NMR and simulation studies. Here, we propose three major ways that macromolecules use conformational entropy to perform their functions; first, prepaying entropic cost through ordering of the ground state; second, spatially redistributing entropy, in which a decrease in entropy in one area is reciprocated by an increase in entropy elsewhere; third, populating catalytically competent ensembles, in which conformational entropy within the enzymatic scaffold aids in lowering transition state barriers. We also provide our perspective on how solving the current challenge of structurally defining the ensembles encoding conformational entropy will lead to new possibilities for controlling binding, catalysis and allostery.</p><figure></figure>\",\"PeriodicalId\":18832,\"journal\":{\"name\":\"Nature chemical biology\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41589-025-01879-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01879-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Advances in uncovering the mechanisms of macromolecular conformational entropy
During protein folding, proteins transition from a disordered polymer into a globular structure, markedly decreasing their conformational degrees of freedom, leading to a substantial reduction in entropy. Nonetheless, folded proteins retain substantial entropy as they fluctuate between the conformations that make up their native state. This residual entropy contributes to crucial functions like binding and catalysis, supported by growing evidence primarily from NMR and simulation studies. Here, we propose three major ways that macromolecules use conformational entropy to perform their functions; first, prepaying entropic cost through ordering of the ground state; second, spatially redistributing entropy, in which a decrease in entropy in one area is reciprocated by an increase in entropy elsewhere; third, populating catalytically competent ensembles, in which conformational entropy within the enzymatic scaffold aids in lowering transition state barriers. We also provide our perspective on how solving the current challenge of structurally defining the ensembles encoding conformational entropy will lead to new possibilities for controlling binding, catalysis and allostery.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.