{"title":"可编程曲线-直线折纸:多变形性和体积可调性","authors":"Morad Mirzajanzadeh, Damiano Pasini","doi":"10.1126/sciadv.adu4678","DOIUrl":null,"url":null,"abstract":"<div >Existing origami patterns can transform flat sheets into curved surfaces or be stacked into volumetric lattices with tunable properties. Their folded surfaces, however, cannot morph into other rigid states, and their three-dimensional (3D) tessellations allow stiffness tuning only through large size variations, causing abrupt shifts in stiffness and affecting other properties such as relative density. These limitations hinder their use as reprogrammable structural materials in real-life applications. Here, we introduce a reprogrammable origami integrating curved and straight bistable creases to address both challenges: attaining rigidity while allowing reversible remorphability into numerous load-bearing shapes and generating 3D curved-plate lattices, delivering in a prescribed configuration of fixed dimensions continuously tunable elastic moduli spanning two orders of magnitude. Leveraging curved origami theories, differential geometry, paperboard models, and experiments, we construct the folded pattern, formulate its geometric mechanics, and quantify its mechanical performance. Our approach provides a versatile platform for multifunctional metamaterials, enabling adaptive and resilient materials in aerospace, biomechanics, and soft robotics.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 17","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu4678","citationCount":"0","resultStr":"{\"title\":\"Reprogrammable curved-straight origami: Multimorphability and volumetric tunability\",\"authors\":\"Morad Mirzajanzadeh, Damiano Pasini\",\"doi\":\"10.1126/sciadv.adu4678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Existing origami patterns can transform flat sheets into curved surfaces or be stacked into volumetric lattices with tunable properties. Their folded surfaces, however, cannot morph into other rigid states, and their three-dimensional (3D) tessellations allow stiffness tuning only through large size variations, causing abrupt shifts in stiffness and affecting other properties such as relative density. These limitations hinder their use as reprogrammable structural materials in real-life applications. Here, we introduce a reprogrammable origami integrating curved and straight bistable creases to address both challenges: attaining rigidity while allowing reversible remorphability into numerous load-bearing shapes and generating 3D curved-plate lattices, delivering in a prescribed configuration of fixed dimensions continuously tunable elastic moduli spanning two orders of magnitude. Leveraging curved origami theories, differential geometry, paperboard models, and experiments, we construct the folded pattern, formulate its geometric mechanics, and quantify its mechanical performance. Our approach provides a versatile platform for multifunctional metamaterials, enabling adaptive and resilient materials in aerospace, biomechanics, and soft robotics.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 17\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adu4678\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adu4678\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu4678","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Reprogrammable curved-straight origami: Multimorphability and volumetric tunability
Existing origami patterns can transform flat sheets into curved surfaces or be stacked into volumetric lattices with tunable properties. Their folded surfaces, however, cannot morph into other rigid states, and their three-dimensional (3D) tessellations allow stiffness tuning only through large size variations, causing abrupt shifts in stiffness and affecting other properties such as relative density. These limitations hinder their use as reprogrammable structural materials in real-life applications. Here, we introduce a reprogrammable origami integrating curved and straight bistable creases to address both challenges: attaining rigidity while allowing reversible remorphability into numerous load-bearing shapes and generating 3D curved-plate lattices, delivering in a prescribed configuration of fixed dimensions continuously tunable elastic moduli spanning two orders of magnitude. Leveraging curved origami theories, differential geometry, paperboard models, and experiments, we construct the folded pattern, formulate its geometric mechanics, and quantify its mechanical performance. Our approach provides a versatile platform for multifunctional metamaterials, enabling adaptive and resilient materials in aerospace, biomechanics, and soft robotics.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.