Rong Xu, Yue Cai, Sarah Lambart, Chunfei Chen, Jun-Bo Zhang, Mei-Fu Zhou, Jia Liu, Zhongjie Bai, Tao Wu, Feng Huang, Ting Ruan, Yongsheng Liu
{"title":"板内玄武岩中的重硼同位素揭示了地幔中的再生碳酸盐","authors":"Rong Xu, Yue Cai, Sarah Lambart, Chunfei Chen, Jun-Bo Zhang, Mei-Fu Zhou, Jia Liu, Zhongjie Bai, Tao Wu, Feng Huang, Ting Ruan, Yongsheng Liu","doi":"10.1126/sciadv.ads5104","DOIUrl":null,"url":null,"abstract":"<div >Recycling of surficial volatiles such as carbon into the mantle plays a fundamental role in modulating Earth’s habitability. However, slab devolatilization during subduction could prevent carbon from entering the deep mantle. Boron isotopes are excellent tracers of recycled volatiles, but correlations between boron isotopes and mantle heterogeneity indicators are rarely observed, thereby casting doubt that substantial amounts of volatiles and boron can be recycled into the deep mantle. Here, we show that boron isotopes in two different types of primitive continental intraplate basalts correlate well with mantle heterogeneity indicators, indicating contributions of various subducted crustal components. A common high-δ<sup>11</sup>B component shared by both types of basalts is best explained as recycled subducted carbonate rather than serpentinite. Our findings demonstrate that subducted carbonate carries heavy B into Earth’s deep mantle, and its recycling could account for the high-δ<sup>11</sup>B signatures observed in intraplate magmas and deeply sourced carbonatites.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 17","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads5104","citationCount":"0","resultStr":"{\"title\":\"Heavy boron isotopes in intraplate basalts reveal recycled carbonate in the mantle\",\"authors\":\"Rong Xu, Yue Cai, Sarah Lambart, Chunfei Chen, Jun-Bo Zhang, Mei-Fu Zhou, Jia Liu, Zhongjie Bai, Tao Wu, Feng Huang, Ting Ruan, Yongsheng Liu\",\"doi\":\"10.1126/sciadv.ads5104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Recycling of surficial volatiles such as carbon into the mantle plays a fundamental role in modulating Earth’s habitability. However, slab devolatilization during subduction could prevent carbon from entering the deep mantle. Boron isotopes are excellent tracers of recycled volatiles, but correlations between boron isotopes and mantle heterogeneity indicators are rarely observed, thereby casting doubt that substantial amounts of volatiles and boron can be recycled into the deep mantle. Here, we show that boron isotopes in two different types of primitive continental intraplate basalts correlate well with mantle heterogeneity indicators, indicating contributions of various subducted crustal components. A common high-δ<sup>11</sup>B component shared by both types of basalts is best explained as recycled subducted carbonate rather than serpentinite. Our findings demonstrate that subducted carbonate carries heavy B into Earth’s deep mantle, and its recycling could account for the high-δ<sup>11</sup>B signatures observed in intraplate magmas and deeply sourced carbonatites.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 17\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ads5104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ads5104\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads5104","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Heavy boron isotopes in intraplate basalts reveal recycled carbonate in the mantle
Recycling of surficial volatiles such as carbon into the mantle plays a fundamental role in modulating Earth’s habitability. However, slab devolatilization during subduction could prevent carbon from entering the deep mantle. Boron isotopes are excellent tracers of recycled volatiles, but correlations between boron isotopes and mantle heterogeneity indicators are rarely observed, thereby casting doubt that substantial amounts of volatiles and boron can be recycled into the deep mantle. Here, we show that boron isotopes in two different types of primitive continental intraplate basalts correlate well with mantle heterogeneity indicators, indicating contributions of various subducted crustal components. A common high-δ11B component shared by both types of basalts is best explained as recycled subducted carbonate rather than serpentinite. Our findings demonstrate that subducted carbonate carries heavy B into Earth’s deep mantle, and its recycling could account for the high-δ11B signatures observed in intraplate magmas and deeply sourced carbonatites.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.