麦角甾醇代谢的结构解剖揭示了膜相分离的优化途径

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Israel Juarez-Contreras, Laura J. S. Lopes, Jamie Holt, Lorena Yu-Liao, Katherine O’Shea, Jose Ruiz-Ruiz, Alexander Sodt, Itay Budin
{"title":"麦角甾醇代谢的结构解剖揭示了膜相分离的优化途径","authors":"Israel Juarez-Contreras,&nbsp;Laura J. S. Lopes,&nbsp;Jamie Holt,&nbsp;Lorena Yu-Liao,&nbsp;Katherine O’Shea,&nbsp;Jose Ruiz-Ruiz,&nbsp;Alexander Sodt,&nbsp;Itay Budin","doi":"10.1126/sciadv.adu7190","DOIUrl":null,"url":null,"abstract":"<div >Sterols are among the most abundant lipids in eukaryotic cells yet are synthesized through notoriously long metabolic pathways. It has been proposed that the molecular evolution of such pathways must have required each step to increase the capacity of its product to condense and order phospholipids. Here, we carry out a systematic analysis of the ergosterol pathway that leverages the yeast vacuole’s capacity to phase separate into ordered membrane domains. In the post-synthetic steps specific to ergosterol biosynthesis, we find that successive modifications act to oscillate ordering capacity, settling on a level that supports phase separation while retaining fluidity of the resulting domains. Simulations carried out with each intermediate showed how conformers in the sterol’s alkyl tail are capable of modulating long-range ordering of phospholipids, which could underlie changes in phase behavior. Our results indicate that the complexity of sterol metabolism could have resulted from the need to balance lipid interactions required for membrane organization.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 17","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu7190","citationCount":"0","resultStr":"{\"title\":\"Structural dissection of ergosterol metabolism reveals a pathway optimized for membrane phase separation\",\"authors\":\"Israel Juarez-Contreras,&nbsp;Laura J. S. Lopes,&nbsp;Jamie Holt,&nbsp;Lorena Yu-Liao,&nbsp;Katherine O’Shea,&nbsp;Jose Ruiz-Ruiz,&nbsp;Alexander Sodt,&nbsp;Itay Budin\",\"doi\":\"10.1126/sciadv.adu7190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Sterols are among the most abundant lipids in eukaryotic cells yet are synthesized through notoriously long metabolic pathways. It has been proposed that the molecular evolution of such pathways must have required each step to increase the capacity of its product to condense and order phospholipids. Here, we carry out a systematic analysis of the ergosterol pathway that leverages the yeast vacuole’s capacity to phase separate into ordered membrane domains. In the post-synthetic steps specific to ergosterol biosynthesis, we find that successive modifications act to oscillate ordering capacity, settling on a level that supports phase separation while retaining fluidity of the resulting domains. Simulations carried out with each intermediate showed how conformers in the sterol’s alkyl tail are capable of modulating long-range ordering of phospholipids, which could underlie changes in phase behavior. Our results indicate that the complexity of sterol metabolism could have resulted from the need to balance lipid interactions required for membrane organization.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 17\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adu7190\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adu7190\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu7190","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

甾醇是真核细胞中最丰富的脂类之一,但它的合成需要经过众所周知的长代谢途径。有人提出,这种途径的分子进化必须要求每一步都增加其产物浓缩和排序磷脂的能力。在这里,我们对麦角甾醇途径进行了系统的分析,该途径利用酵母液泡相分离成有序膜结构域的能力。在麦角甾醇生物合成的合成后步骤中,我们发现连续的修饰作用于振荡有序能力,稳定在支持相分离的水平上,同时保持所得结构域的流动性。对每种中间体进行的模拟表明,甾醇烷基尾部的构象如何能够调节磷脂的远程排序,这可能是相行为变化的基础。我们的研究结果表明,固醇代谢的复杂性可能是由于需要平衡膜组织所需的脂质相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural dissection of ergosterol metabolism reveals a pathway optimized for membrane phase separation

Structural dissection of ergosterol metabolism reveals a pathway optimized for membrane phase separation
Sterols are among the most abundant lipids in eukaryotic cells yet are synthesized through notoriously long metabolic pathways. It has been proposed that the molecular evolution of such pathways must have required each step to increase the capacity of its product to condense and order phospholipids. Here, we carry out a systematic analysis of the ergosterol pathway that leverages the yeast vacuole’s capacity to phase separate into ordered membrane domains. In the post-synthetic steps specific to ergosterol biosynthesis, we find that successive modifications act to oscillate ordering capacity, settling on a level that supports phase separation while retaining fluidity of the resulting domains. Simulations carried out with each intermediate showed how conformers in the sterol’s alkyl tail are capable of modulating long-range ordering of phospholipids, which could underlie changes in phase behavior. Our results indicate that the complexity of sterol metabolism could have resulted from the need to balance lipid interactions required for membrane organization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信