Israel Juarez-Contreras, Laura J. S. Lopes, Jamie Holt, Lorena Yu-Liao, Katherine O’Shea, Jose Ruiz-Ruiz, Alexander Sodt, Itay Budin
{"title":"麦角甾醇代谢的结构解剖揭示了膜相分离的优化途径","authors":"Israel Juarez-Contreras, Laura J. S. Lopes, Jamie Holt, Lorena Yu-Liao, Katherine O’Shea, Jose Ruiz-Ruiz, Alexander Sodt, Itay Budin","doi":"10.1126/sciadv.adu7190","DOIUrl":null,"url":null,"abstract":"<div >Sterols are among the most abundant lipids in eukaryotic cells yet are synthesized through notoriously long metabolic pathways. It has been proposed that the molecular evolution of such pathways must have required each step to increase the capacity of its product to condense and order phospholipids. Here, we carry out a systematic analysis of the ergosterol pathway that leverages the yeast vacuole’s capacity to phase separate into ordered membrane domains. In the post-synthetic steps specific to ergosterol biosynthesis, we find that successive modifications act to oscillate ordering capacity, settling on a level that supports phase separation while retaining fluidity of the resulting domains. Simulations carried out with each intermediate showed how conformers in the sterol’s alkyl tail are capable of modulating long-range ordering of phospholipids, which could underlie changes in phase behavior. Our results indicate that the complexity of sterol metabolism could have resulted from the need to balance lipid interactions required for membrane organization.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 17","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu7190","citationCount":"0","resultStr":"{\"title\":\"Structural dissection of ergosterol metabolism reveals a pathway optimized for membrane phase separation\",\"authors\":\"Israel Juarez-Contreras, Laura J. S. Lopes, Jamie Holt, Lorena Yu-Liao, Katherine O’Shea, Jose Ruiz-Ruiz, Alexander Sodt, Itay Budin\",\"doi\":\"10.1126/sciadv.adu7190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Sterols are among the most abundant lipids in eukaryotic cells yet are synthesized through notoriously long metabolic pathways. It has been proposed that the molecular evolution of such pathways must have required each step to increase the capacity of its product to condense and order phospholipids. Here, we carry out a systematic analysis of the ergosterol pathway that leverages the yeast vacuole’s capacity to phase separate into ordered membrane domains. In the post-synthetic steps specific to ergosterol biosynthesis, we find that successive modifications act to oscillate ordering capacity, settling on a level that supports phase separation while retaining fluidity of the resulting domains. Simulations carried out with each intermediate showed how conformers in the sterol’s alkyl tail are capable of modulating long-range ordering of phospholipids, which could underlie changes in phase behavior. Our results indicate that the complexity of sterol metabolism could have resulted from the need to balance lipid interactions required for membrane organization.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 17\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adu7190\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adu7190\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu7190","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Structural dissection of ergosterol metabolism reveals a pathway optimized for membrane phase separation
Sterols are among the most abundant lipids in eukaryotic cells yet are synthesized through notoriously long metabolic pathways. It has been proposed that the molecular evolution of such pathways must have required each step to increase the capacity of its product to condense and order phospholipids. Here, we carry out a systematic analysis of the ergosterol pathway that leverages the yeast vacuole’s capacity to phase separate into ordered membrane domains. In the post-synthetic steps specific to ergosterol biosynthesis, we find that successive modifications act to oscillate ordering capacity, settling on a level that supports phase separation while retaining fluidity of the resulting domains. Simulations carried out with each intermediate showed how conformers in the sterol’s alkyl tail are capable of modulating long-range ordering of phospholipids, which could underlie changes in phase behavior. Our results indicate that the complexity of sterol metabolism could have resulted from the need to balance lipid interactions required for membrane organization.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.