Dirk W. Steyn, William Nemeth, Matthew Page, San Theingi, David L. Young, Sumit Agarwal, Paul Stradins
{"title":"可变光照下对称多晶硅/SiOx/单晶硅测试结构接触电阻率的测量","authors":"Dirk W. Steyn, William Nemeth, Matthew Page, San Theingi, David L. Young, Sumit Agarwal, Paul Stradins","doi":"10.1002/solr.202400877","DOIUrl":null,"url":null,"abstract":"<p>While different methods exist to determine the contact resistivity in semiconductor devices, these methods are limited to measurement of the majority carrier contacts. The measurement of p- or n-type contacts on n- or p-type crystalline silicon, respectively, is challenging due to the blocking diode formed by the p–n junction. In this article, we address this problem for tunneling oxide passivating contacts used in high-efficiency Si solar cells. We propose a universal method to extract contact resistivity on symmetric test structures with polycrystalline silicon on SiO<sub><i>x</i></sub> (poly-Si/SiO<sub><i>x</i></sub>) passivating contacts under illumination, both for p–n and high–low-junction passivated contacts. In this method, we demonstrate that the total contact resistance of each cell grid finger to the base wafer is governed by its effective contact area, defined by the transfer length extending from both sides of the finger. Therefore, the grid contact resistance of a poly-Si contact depends on the ratio of the doped poly-Si sheet resistance to the tunneling contact resistivity.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 8","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400877","citationCount":"0","resultStr":"{\"title\":\"Measurement of Contact Resistivity In Symmetric Polycrystalline Si/SiOx/Monocrystalline Si Test Structures Using Variable Light Illumination\",\"authors\":\"Dirk W. Steyn, William Nemeth, Matthew Page, San Theingi, David L. Young, Sumit Agarwal, Paul Stradins\",\"doi\":\"10.1002/solr.202400877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While different methods exist to determine the contact resistivity in semiconductor devices, these methods are limited to measurement of the majority carrier contacts. The measurement of p- or n-type contacts on n- or p-type crystalline silicon, respectively, is challenging due to the blocking diode formed by the p–n junction. In this article, we address this problem for tunneling oxide passivating contacts used in high-efficiency Si solar cells. We propose a universal method to extract contact resistivity on symmetric test structures with polycrystalline silicon on SiO<sub><i>x</i></sub> (poly-Si/SiO<sub><i>x</i></sub>) passivating contacts under illumination, both for p–n and high–low-junction passivated contacts. In this method, we demonstrate that the total contact resistance of each cell grid finger to the base wafer is governed by its effective contact area, defined by the transfer length extending from both sides of the finger. Therefore, the grid contact resistance of a poly-Si contact depends on the ratio of the doped poly-Si sheet resistance to the tunneling contact resistivity.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 8\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400877\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400877\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400877","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Measurement of Contact Resistivity In Symmetric Polycrystalline Si/SiOx/Monocrystalline Si Test Structures Using Variable Light Illumination
While different methods exist to determine the contact resistivity in semiconductor devices, these methods are limited to measurement of the majority carrier contacts. The measurement of p- or n-type contacts on n- or p-type crystalline silicon, respectively, is challenging due to the blocking diode formed by the p–n junction. In this article, we address this problem for tunneling oxide passivating contacts used in high-efficiency Si solar cells. We propose a universal method to extract contact resistivity on symmetric test structures with polycrystalline silicon on SiOx (poly-Si/SiOx) passivating contacts under illumination, both for p–n and high–low-junction passivated contacts. In this method, we demonstrate that the total contact resistance of each cell grid finger to the base wafer is governed by its effective contact area, defined by the transfer length extending from both sides of the finger. Therefore, the grid contact resistance of a poly-Si contact depends on the ratio of the doped poly-Si sheet resistance to the tunneling contact resistivity.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.