基于监督机器学习方法的亚马逊雨林土地利用变化后社区水平代谢变化

IF 3.6 4区 生物学 Q2 ENVIRONMENTAL SCIENCES
Md Abdul Wadud Khan, Brendan J. M. Bohannan, Kyle M. Meyer, Ann M. Womack, Klaus Nüsslein, James P. Grover, Jorge L. Mazza Rodrigues
{"title":"基于监督机器学习方法的亚马逊雨林土地利用变化后社区水平代谢变化","authors":"Md Abdul Wadud Khan,&nbsp;Brendan J. M. Bohannan,&nbsp;Kyle M. Meyer,&nbsp;Ann M. Womack,&nbsp;Klaus Nüsslein,&nbsp;James P. Grover,&nbsp;Jorge L. Mazza Rodrigues","doi":"10.1111/1758-2229.70088","DOIUrl":null,"url":null,"abstract":"<p>The Amazon rainforest has been subjected to high rates of deforestation, mostly for pasturelands, over the last few decades. This change in plant cover is known to alter the soil microbiome and the functions it mediates, but the genomic changes underlying this response are still unresolved. In this study, we used a combination of deep shotgun metagenomics complemented by a supervised machine learning approach to compare the metabolic strategies of tropical soil microbial communities in pristine forests and long-term established pastures in the Amazon. Machine learning-derived metagenome analysis indicated that microbial community structures (bacteria, archaea and viruses) and the composition of protein-coding genes were distinct in each plant cover type environment. Forest and pasture soils had different genomic diversities for the above three taxonomic groups, characterised by their protein-coding genes. These differences in metagenome profiles in soils under forests and pastures suggest that metabolic strategies related to carbohydrate and energy metabolisms were altered at community level. Changes were also consistent with known modifications to the C and N cycles caused by long-term shifts in aboveground vegetation and were also associated with several soil physicochemical properties known to change with land use, such as the C/N ratio, soil temperature and exchangeable acidity. In addition, our analysis reveals that these alterations in land use can also result in changes to the composition and diversity of the soil DNA virome. Collectively, our study indicates that soil microbial communities shift their overall metabolic strategies, driven by genomic alterations observed in pristine forests and long-term established pastures with implications for the C and N cycles.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70088","citationCount":"0","resultStr":"{\"title\":\"Community-Level Metabolic Shifts Following Land Use Change in the Amazon Rainforest Identified by a Supervised Machine Leaning Approach\",\"authors\":\"Md Abdul Wadud Khan,&nbsp;Brendan J. M. Bohannan,&nbsp;Kyle M. Meyer,&nbsp;Ann M. Womack,&nbsp;Klaus Nüsslein,&nbsp;James P. Grover,&nbsp;Jorge L. Mazza Rodrigues\",\"doi\":\"10.1111/1758-2229.70088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Amazon rainforest has been subjected to high rates of deforestation, mostly for pasturelands, over the last few decades. This change in plant cover is known to alter the soil microbiome and the functions it mediates, but the genomic changes underlying this response are still unresolved. In this study, we used a combination of deep shotgun metagenomics complemented by a supervised machine learning approach to compare the metabolic strategies of tropical soil microbial communities in pristine forests and long-term established pastures in the Amazon. Machine learning-derived metagenome analysis indicated that microbial community structures (bacteria, archaea and viruses) and the composition of protein-coding genes were distinct in each plant cover type environment. Forest and pasture soils had different genomic diversities for the above three taxonomic groups, characterised by their protein-coding genes. These differences in metagenome profiles in soils under forests and pastures suggest that metabolic strategies related to carbohydrate and energy metabolisms were altered at community level. Changes were also consistent with known modifications to the C and N cycles caused by long-term shifts in aboveground vegetation and were also associated with several soil physicochemical properties known to change with land use, such as the C/N ratio, soil temperature and exchangeable acidity. In addition, our analysis reveals that these alterations in land use can also result in changes to the composition and diversity of the soil DNA virome. Collectively, our study indicates that soil microbial communities shift their overall metabolic strategies, driven by genomic alterations observed in pristine forests and long-term established pastures with implications for the C and N cycles.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70088\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70088\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70088","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,亚马逊雨林遭受了高速率的森林砍伐,主要是为了牧场。已知植物覆盖的这种变化会改变土壤微生物群及其介导的功能,但这种反应背后的基因组变化仍未得到解决。在这项研究中,我们使用了深度鸟枪宏基因组学和监督机器学习相结合的方法来比较亚马逊原始森林和长期建立的牧场热带土壤微生物群落的代谢策略。机器学习衍生的宏基因组分析表明,每种植物覆盖类型环境中的微生物群落结构(细菌、古生菌和病毒)和蛋白质编码基因的组成都是不同的。森林和牧场土壤在上述3个分类类群中具有不同的基因组多样性,其特征是蛋白质编码基因。森林和牧场土壤宏基因组谱的这些差异表明,与碳水化合物和能量代谢相关的代谢策略在群落水平上发生了变化。这些变化也与已知的地表植被长期变化引起的碳氮循环的变化相一致,并且还与一些已知的随土地利用而变化的土壤理化性质有关,如碳氮比、土壤温度和交换性酸度。此外,我们的分析表明,这些土地利用的变化也会导致土壤DNA病毒组的组成和多样性的变化。总的来说,我们的研究表明,在原始森林和长期建立的牧场中观察到的基因组变化驱动下,土壤微生物群落改变了它们的整体代谢策略,这对C和N循环有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Community-Level Metabolic Shifts Following Land Use Change in the Amazon Rainforest Identified by a Supervised Machine Leaning Approach

Community-Level Metabolic Shifts Following Land Use Change in the Amazon Rainforest Identified by a Supervised Machine Leaning Approach

The Amazon rainforest has been subjected to high rates of deforestation, mostly for pasturelands, over the last few decades. This change in plant cover is known to alter the soil microbiome and the functions it mediates, but the genomic changes underlying this response are still unresolved. In this study, we used a combination of deep shotgun metagenomics complemented by a supervised machine learning approach to compare the metabolic strategies of tropical soil microbial communities in pristine forests and long-term established pastures in the Amazon. Machine learning-derived metagenome analysis indicated that microbial community structures (bacteria, archaea and viruses) and the composition of protein-coding genes were distinct in each plant cover type environment. Forest and pasture soils had different genomic diversities for the above three taxonomic groups, characterised by their protein-coding genes. These differences in metagenome profiles in soils under forests and pastures suggest that metabolic strategies related to carbohydrate and energy metabolisms were altered at community level. Changes were also consistent with known modifications to the C and N cycles caused by long-term shifts in aboveground vegetation and were also associated with several soil physicochemical properties known to change with land use, such as the C/N ratio, soil temperature and exchangeable acidity. In addition, our analysis reveals that these alterations in land use can also result in changes to the composition and diversity of the soil DNA virome. Collectively, our study indicates that soil microbial communities shift their overall metabolic strategies, driven by genomic alterations observed in pristine forests and long-term established pastures with implications for the C and N cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Microbiology Reports
Environmental Microbiology Reports ENVIRONMENTAL SCIENCES-MICROBIOLOGY
CiteScore
6.00
自引率
3.00%
发文量
91
审稿时长
3.0 months
期刊介绍: The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side. Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信