Sourav Ranjan Ghosh, Sasthi Charan Halder, Atish Dipankar Jana
{"title":"利用核外电子密度分离研究B13+转子动力学及AdNDP轨道还原电子密度分析新方法","authors":"Sourav Ranjan Ghosh, Sasthi Charan Halder, Atish Dipankar Jana","doi":"10.1002/slct.202406012","DOIUrl":null,"url":null,"abstract":"<p>In this study, the core and periphery of the B<sub>13</sub><sup>+</sup> cluster have been unveiled by employing a novel approach—Reduced Electron Density Analysis of adaptive natural density partitioning (AdNDP) Orbitals—to explore its rotor action. The central core of the cluster, acting as a “control unit”, governs the transformation between the ground state (GS) and transition state (TS). Core–peripheral electron density separation alongside AdNDP analysis has revealed how electron density shifts within the core dictate the cluster's structural transitions. For the first time, the reduced electron density of AdNDP orbitals provides a clearer visualization of the core's subtle rotational movements, offering an unprecedented look at the mechanism behind the GS-TS interconversion. The iso-surface plots highlight the influence of three core atoms, particularly one in the GS and two atoms in the TS, which serve as “master atoms” guiding the transformation. This work introduces a new methodology for investigating nanoscale transformations, laying the groundwork for future research in controlling nanomotors and designing advanced materials.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 16","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relooking into the Dynamics of B13+ Rotor Through Core–Peripheral Electron Density Separation and a Novel Approach of Reduced Electron Density Analysis of AdNDP Orbitals\",\"authors\":\"Sourav Ranjan Ghosh, Sasthi Charan Halder, Atish Dipankar Jana\",\"doi\":\"10.1002/slct.202406012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the core and periphery of the B<sub>13</sub><sup>+</sup> cluster have been unveiled by employing a novel approach—Reduced Electron Density Analysis of adaptive natural density partitioning (AdNDP) Orbitals—to explore its rotor action. The central core of the cluster, acting as a “control unit”, governs the transformation between the ground state (GS) and transition state (TS). Core–peripheral electron density separation alongside AdNDP analysis has revealed how electron density shifts within the core dictate the cluster's structural transitions. For the first time, the reduced electron density of AdNDP orbitals provides a clearer visualization of the core's subtle rotational movements, offering an unprecedented look at the mechanism behind the GS-TS interconversion. The iso-surface plots highlight the influence of three core atoms, particularly one in the GS and two atoms in the TS, which serve as “master atoms” guiding the transformation. This work introduces a new methodology for investigating nanoscale transformations, laying the groundwork for future research in controlling nanomotors and designing advanced materials.</p>\",\"PeriodicalId\":146,\"journal\":{\"name\":\"ChemistrySelect\",\"volume\":\"10 16\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistrySelect\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/slct.202406012\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202406012","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Relooking into the Dynamics of B13+ Rotor Through Core–Peripheral Electron Density Separation and a Novel Approach of Reduced Electron Density Analysis of AdNDP Orbitals
In this study, the core and periphery of the B13+ cluster have been unveiled by employing a novel approach—Reduced Electron Density Analysis of adaptive natural density partitioning (AdNDP) Orbitals—to explore its rotor action. The central core of the cluster, acting as a “control unit”, governs the transformation between the ground state (GS) and transition state (TS). Core–peripheral electron density separation alongside AdNDP analysis has revealed how electron density shifts within the core dictate the cluster's structural transitions. For the first time, the reduced electron density of AdNDP orbitals provides a clearer visualization of the core's subtle rotational movements, offering an unprecedented look at the mechanism behind the GS-TS interconversion. The iso-surface plots highlight the influence of three core atoms, particularly one in the GS and two atoms in the TS, which serve as “master atoms” guiding the transformation. This work introduces a new methodology for investigating nanoscale transformations, laying the groundwork for future research in controlling nanomotors and designing advanced materials.
期刊介绍:
ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.