Clara Rittmann, Pascal Messmer, Florian Schindler, Jana-Isabelle Polzin, Armin Richter, Charlotte Weiss, Martin C. Schubert, Stefan Janz, Marion Drießen
{"title":"底部太阳能电池制造中外延生长硅片有效的原位TOPCon捕集","authors":"Clara Rittmann, Pascal Messmer, Florian Schindler, Jana-Isabelle Polzin, Armin Richter, Charlotte Weiss, Martin C. Schubert, Stefan Janz, Marion Drießen","doi":"10.1002/solr.202400908","DOIUrl":null,"url":null,"abstract":"<p>Epitaxially grown silicon wafers (EpiWafers) have a lower carbon footprint than conventional wafers produced by ingot crystallization but have also a lower initial material quality which can be significantly improved by gettering. We show that in situ gettering during the application of asymmetric n-type and p-type tunnel oxide passivating contacts (TOPCon) increases the material quality of n-type EpiWafers when fabricating bottom solar cells for a perovskite-silicon tandem device. In specific, the gettering effect of the TOPCon layers is compared to phosphorus gettering by systematically evaluating minority charge carrier lifetimes of n-type EpiWafers with base resistivities between 0.5 and 16 Ωcm. For the 1.3 Ωcm EpiWafers, the average lifetimes increase from above 100 µs in the initial state to above 1 ms after TOPCon gettering as well as after phosphorus gettering. To evaluate the impact of the EpiWafers’ quality on cell performance, implied solar cell parameters are calculated from injection-dependent lifetime images for TOPCon bottom solar cell precursors with and without previous phosphorus gettering. The very high electronic wafer quality obtained after TOPCon processing demonstrates that the EpiWafers are very well suited for TOPCon bottom solar cells without the need of an additional phosphorus gettering step.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 8","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400908","citationCount":"0","resultStr":"{\"title\":\"Effective In Situ TOPCon Gettering of Epitaxially Grown Silicon Wafers during Bottom Solar Cell Fabrication\",\"authors\":\"Clara Rittmann, Pascal Messmer, Florian Schindler, Jana-Isabelle Polzin, Armin Richter, Charlotte Weiss, Martin C. Schubert, Stefan Janz, Marion Drießen\",\"doi\":\"10.1002/solr.202400908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Epitaxially grown silicon wafers (EpiWafers) have a lower carbon footprint than conventional wafers produced by ingot crystallization but have also a lower initial material quality which can be significantly improved by gettering. We show that in situ gettering during the application of asymmetric n-type and p-type tunnel oxide passivating contacts (TOPCon) increases the material quality of n-type EpiWafers when fabricating bottom solar cells for a perovskite-silicon tandem device. In specific, the gettering effect of the TOPCon layers is compared to phosphorus gettering by systematically evaluating minority charge carrier lifetimes of n-type EpiWafers with base resistivities between 0.5 and 16 Ωcm. For the 1.3 Ωcm EpiWafers, the average lifetimes increase from above 100 µs in the initial state to above 1 ms after TOPCon gettering as well as after phosphorus gettering. To evaluate the impact of the EpiWafers’ quality on cell performance, implied solar cell parameters are calculated from injection-dependent lifetime images for TOPCon bottom solar cell precursors with and without previous phosphorus gettering. The very high electronic wafer quality obtained after TOPCon processing demonstrates that the EpiWafers are very well suited for TOPCon bottom solar cells without the need of an additional phosphorus gettering step.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 8\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400908\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400908\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400908","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Effective In Situ TOPCon Gettering of Epitaxially Grown Silicon Wafers during Bottom Solar Cell Fabrication
Epitaxially grown silicon wafers (EpiWafers) have a lower carbon footprint than conventional wafers produced by ingot crystallization but have also a lower initial material quality which can be significantly improved by gettering. We show that in situ gettering during the application of asymmetric n-type and p-type tunnel oxide passivating contacts (TOPCon) increases the material quality of n-type EpiWafers when fabricating bottom solar cells for a perovskite-silicon tandem device. In specific, the gettering effect of the TOPCon layers is compared to phosphorus gettering by systematically evaluating minority charge carrier lifetimes of n-type EpiWafers with base resistivities between 0.5 and 16 Ωcm. For the 1.3 Ωcm EpiWafers, the average lifetimes increase from above 100 µs in the initial state to above 1 ms after TOPCon gettering as well as after phosphorus gettering. To evaluate the impact of the EpiWafers’ quality on cell performance, implied solar cell parameters are calculated from injection-dependent lifetime images for TOPCon bottom solar cell precursors with and without previous phosphorus gettering. The very high electronic wafer quality obtained after TOPCon processing demonstrates that the EpiWafers are very well suited for TOPCon bottom solar cells without the need of an additional phosphorus gettering step.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.