浮游亚生物的悖论:微生物群落中菌株水平多样性的合理机制和开放问题

IF 4.3 2区 生物学 Q2 MICROBIOLOGY
Akshit Goyal, Griffin Chure
{"title":"浮游亚生物的悖论:微生物群落中菌株水平多样性的合理机制和开放问题","authors":"Akshit Goyal,&nbsp;Griffin Chure","doi":"10.1111/1462-2920.70094","DOIUrl":null,"url":null,"abstract":"<p>Microbial communities are often complex and highly diverse, typically with dozens of species sharing spatially-restricted environments. Within these species, genetic and ecological variation often exists at a much finer scale, with closely related strains coexisting and competing. While the coexistence of strains in communities has been heavily explored over the past two decades, we have no self-consistent theory of how this diversity is maintained. This question challenges our conventional understanding of ecological coexistence, typically framed around species with clear phenotypic and ecological differences. In this review, we synthesise plausible mechanisms underlying strain-level diversity (termed microdiversity), focusing on niche-based mechanisms such as nutrient competition, neutral mechanisms such as migration, and evolutionary mechanisms such as horizontal gene transfer. We critically assess the strengths and caveats of these mechanisms, acknowledging key gaps that persist in linking genetic similarity to ecological divergence. Finally, we highlight how the origin and maintenance of microdiversity could pose a major challenge to conventional ecological thinking. We articulate a call-to-arms for a dialogue between well-designed experiments and new theoretical frameworks to address this grand conceptual challenge in understanding microbial biodiversity.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70094","citationCount":"0","resultStr":"{\"title\":\"Paradox of the Sub-Plankton: Plausible Mechanisms and Open Problems Underlying Strain-Level Diversity in Microbial Communities\",\"authors\":\"Akshit Goyal,&nbsp;Griffin Chure\",\"doi\":\"10.1111/1462-2920.70094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microbial communities are often complex and highly diverse, typically with dozens of species sharing spatially-restricted environments. Within these species, genetic and ecological variation often exists at a much finer scale, with closely related strains coexisting and competing. While the coexistence of strains in communities has been heavily explored over the past two decades, we have no self-consistent theory of how this diversity is maintained. This question challenges our conventional understanding of ecological coexistence, typically framed around species with clear phenotypic and ecological differences. In this review, we synthesise plausible mechanisms underlying strain-level diversity (termed microdiversity), focusing on niche-based mechanisms such as nutrient competition, neutral mechanisms such as migration, and evolutionary mechanisms such as horizontal gene transfer. We critically assess the strengths and caveats of these mechanisms, acknowledging key gaps that persist in linking genetic similarity to ecological divergence. Finally, we highlight how the origin and maintenance of microdiversity could pose a major challenge to conventional ecological thinking. We articulate a call-to-arms for a dialogue between well-designed experiments and new theoretical frameworks to address this grand conceptual challenge in understanding microbial biodiversity.</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70094\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70094\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70094","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微生物群落通常是复杂和高度多样化的,通常有几十个物种共享空间有限的环境。在这些物种中,遗传和生态变异往往存在于更小的尺度上,密切相关的菌株共存和竞争。虽然在过去的二十年里,人们对社区中菌株的共存进行了大量探索,但我们没有关于如何维持这种多样性的自洽理论。这个问题挑战了我们对生态共存的传统理解,这种理解通常围绕着具有明显表型和生态差异的物种。在这篇综述中,我们综合了菌株水平多样性(称为微多样性)的合理机制,重点是基于生态位的机制,如养分竞争,中性机制,如迁移,以及进化机制,如水平基因转移。我们批判性地评估了这些机制的优势和警告,承认在将遗传相似性与生态差异联系起来方面存在的关键差距。最后,我们强调了微多样性的起源和维持如何对传统的生态学思维构成重大挑战。我们呼吁在精心设计的实验和新的理论框架之间进行对话,以解决理解微生物生物多样性的这一重大概念挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Paradox of the Sub-Plankton: Plausible Mechanisms and Open Problems Underlying Strain-Level Diversity in Microbial Communities

Paradox of the Sub-Plankton: Plausible Mechanisms and Open Problems Underlying Strain-Level Diversity in Microbial Communities

Microbial communities are often complex and highly diverse, typically with dozens of species sharing spatially-restricted environments. Within these species, genetic and ecological variation often exists at a much finer scale, with closely related strains coexisting and competing. While the coexistence of strains in communities has been heavily explored over the past two decades, we have no self-consistent theory of how this diversity is maintained. This question challenges our conventional understanding of ecological coexistence, typically framed around species with clear phenotypic and ecological differences. In this review, we synthesise plausible mechanisms underlying strain-level diversity (termed microdiversity), focusing on niche-based mechanisms such as nutrient competition, neutral mechanisms such as migration, and evolutionary mechanisms such as horizontal gene transfer. We critically assess the strengths and caveats of these mechanisms, acknowledging key gaps that persist in linking genetic similarity to ecological divergence. Finally, we highlight how the origin and maintenance of microdiversity could pose a major challenge to conventional ecological thinking. We articulate a call-to-arms for a dialogue between well-designed experiments and new theoretical frameworks to address this grand conceptual challenge in understanding microbial biodiversity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信