A. L. Mullen, E. E. Jafarov, J. K. Y. Hung, K. Gurbanov, V. Stepanenko, B. M. Rogers, J. D. Watts, S. M. Natali, B. A. Poulin
{"title":"阿拉斯加育空-库斯库温三角洲两个池塘的热动力学和生物地球化学动力学模拟:气候变率对温室气体通量的影响","authors":"A. L. Mullen, E. E. Jafarov, J. K. Y. Hung, K. Gurbanov, V. Stepanenko, B. M. Rogers, J. D. Watts, S. M. Natali, B. A. Poulin","doi":"10.1029/2024MS004441","DOIUrl":null,"url":null,"abstract":"<p>Fluxes of carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) from open water bodies are critical components of carbon-climate feedbacks in high latitudes. Processes governing the spatial and temporal variability of these aquatic greenhouse gas (GHG) fluxes are still highly uncertain due to limited observational data sets and lack of modeling studies incorporating comprehensive thermal and biochemical processes. This research investigates how slight variations in climate propagate through the biogeochemical cycles of ponds and resulting impacts on GHG emissions. We examine the thermal and biogeochemical dynamics of two ponds in the Yukon–Kuskokwim Delta, Alaska, under varying climatic conditions to study the impacts on CO<sub>2</sub>, CH<sub>4</sub>, and oxygen (O<sub>2</sub>) concentrations and fluxes. We performed multiple numerical experiments, using the LAKE process-based model and field measurements, to analyze how these ponds respond to variations in air temperature, shortwave radiation, and snow cover. Our study demonstrates that ice cover duration and water temperature are primary climatic drivers of GHG fluxes. Climate experiments led to reductions in ice cover duration and increased water temperatures, which subsequently enhanced CH<sub>4</sub> and CO<sub>2</sub> gas emissions from two study ponds. On average, cumulative CH<sub>4</sub> and CO<sub>2</sub> emissions were 5% and 10% higher, respectively, under increases in air temperature and shortwave radiation. Additionally, we uncovered a need to incorporate groundwater influxes of dissolved gases and nutrients in order to fully represent processes governing aquatic biochemical activity. Our work highlights the importance of understanding local-scale processes in predicting future Arctic contributions to GHG emissions.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004441","citationCount":"0","resultStr":"{\"title\":\"Modeling Thermal and Biogeochemical Dynamics in Two Ponds Within Alaska's Yukon–Kuskokwim Delta: Impacts of Climatic Variability on Greenhouse Gas Fluxes\",\"authors\":\"A. L. Mullen, E. E. Jafarov, J. K. Y. Hung, K. Gurbanov, V. Stepanenko, B. M. Rogers, J. D. Watts, S. M. Natali, B. A. Poulin\",\"doi\":\"10.1029/2024MS004441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fluxes of carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) from open water bodies are critical components of carbon-climate feedbacks in high latitudes. Processes governing the spatial and temporal variability of these aquatic greenhouse gas (GHG) fluxes are still highly uncertain due to limited observational data sets and lack of modeling studies incorporating comprehensive thermal and biochemical processes. This research investigates how slight variations in climate propagate through the biogeochemical cycles of ponds and resulting impacts on GHG emissions. We examine the thermal and biogeochemical dynamics of two ponds in the Yukon–Kuskokwim Delta, Alaska, under varying climatic conditions to study the impacts on CO<sub>2</sub>, CH<sub>4</sub>, and oxygen (O<sub>2</sub>) concentrations and fluxes. We performed multiple numerical experiments, using the LAKE process-based model and field measurements, to analyze how these ponds respond to variations in air temperature, shortwave radiation, and snow cover. Our study demonstrates that ice cover duration and water temperature are primary climatic drivers of GHG fluxes. Climate experiments led to reductions in ice cover duration and increased water temperatures, which subsequently enhanced CH<sub>4</sub> and CO<sub>2</sub> gas emissions from two study ponds. On average, cumulative CH<sub>4</sub> and CO<sub>2</sub> emissions were 5% and 10% higher, respectively, under increases in air temperature and shortwave radiation. Additionally, we uncovered a need to incorporate groundwater influxes of dissolved gases and nutrients in order to fully represent processes governing aquatic biochemical activity. Our work highlights the importance of understanding local-scale processes in predicting future Arctic contributions to GHG emissions.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004441\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004441\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004441","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Modeling Thermal and Biogeochemical Dynamics in Two Ponds Within Alaska's Yukon–Kuskokwim Delta: Impacts of Climatic Variability on Greenhouse Gas Fluxes
Fluxes of carbon dioxide (CO2) and methane (CH4) from open water bodies are critical components of carbon-climate feedbacks in high latitudes. Processes governing the spatial and temporal variability of these aquatic greenhouse gas (GHG) fluxes are still highly uncertain due to limited observational data sets and lack of modeling studies incorporating comprehensive thermal and biochemical processes. This research investigates how slight variations in climate propagate through the biogeochemical cycles of ponds and resulting impacts on GHG emissions. We examine the thermal and biogeochemical dynamics of two ponds in the Yukon–Kuskokwim Delta, Alaska, under varying climatic conditions to study the impacts on CO2, CH4, and oxygen (O2) concentrations and fluxes. We performed multiple numerical experiments, using the LAKE process-based model and field measurements, to analyze how these ponds respond to variations in air temperature, shortwave radiation, and snow cover. Our study demonstrates that ice cover duration and water temperature are primary climatic drivers of GHG fluxes. Climate experiments led to reductions in ice cover duration and increased water temperatures, which subsequently enhanced CH4 and CO2 gas emissions from two study ponds. On average, cumulative CH4 and CO2 emissions were 5% and 10% higher, respectively, under increases in air temperature and shortwave radiation. Additionally, we uncovered a need to incorporate groundwater influxes of dissolved gases and nutrients in order to fully represent processes governing aquatic biochemical activity. Our work highlights the importance of understanding local-scale processes in predicting future Arctic contributions to GHG emissions.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.