表达和纯化 RAGE 跨膜结构域以进行结构动态核磁共振研究

IF 1.1 Q4 CELL BIOLOGY
S. M. Dolotova, D. D. Plashchinskaia, Ya. V. Bershatsky, V. A. Lushpa, A. K. Kryuchkova, D. Zhu, I. S. Okhrimenko, E. V. Bocharov
{"title":"表达和纯化 RAGE 跨膜结构域以进行结构动态核磁共振研究","authors":"S. M. Dolotova,&nbsp;D. D. Plashchinskaia,&nbsp;Ya. V. Bershatsky,&nbsp;V. A. Lushpa,&nbsp;A. K. Kryuchkova,&nbsp;D. Zhu,&nbsp;I. S. Okhrimenko,&nbsp;E. V. Bocharov","doi":"10.1134/S1990747824700429","DOIUrl":null,"url":null,"abstract":"<p>Receptor for advanced glycation endproducts (RAGE) plays an important role in the development of inflammation and neurodegenerative diseases. There is no expression of RAGE in healthy cells, but it increases during inflammation processes that leads to tissue damage. RAGE has many ligands of different classes but with similar properties, so RAGE acts as a pattern-recognition receptor. The structure of RAGE lacks information about the transmembrane domain which is necessary for signal transduction by the receptor. In this work, for the first time, using the cell-free expression method, we obtained and purified isotope-labeled fragment of RAGE (residues 335–368, corresponding to the RAGE transmembrane domain flanked by short juxtamembrane regions). For investigation of oligomerization processes we introduced a point oncogenic mutation G349R that is located in the conservative oligomerization motif GxxxG. Nuclear magnetic resonance (NMR) studies of both peptides incorporated into dodecylphosphocholine (DPC) micelles indirectly reveal changes in protein structure and oligomerization properties following the introduction of the oncogenic G349R mutation, which is thought to affect RAGE signaling.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"19 1","pages":"35 - 40"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expression and Purification of Transmembrane Domain of RAGE for Structural-Dynamic NMR Studies\",\"authors\":\"S. M. Dolotova,&nbsp;D. D. Plashchinskaia,&nbsp;Ya. V. Bershatsky,&nbsp;V. A. Lushpa,&nbsp;A. K. Kryuchkova,&nbsp;D. Zhu,&nbsp;I. S. Okhrimenko,&nbsp;E. V. Bocharov\",\"doi\":\"10.1134/S1990747824700429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Receptor for advanced glycation endproducts (RAGE) plays an important role in the development of inflammation and neurodegenerative diseases. There is no expression of RAGE in healthy cells, but it increases during inflammation processes that leads to tissue damage. RAGE has many ligands of different classes but with similar properties, so RAGE acts as a pattern-recognition receptor. The structure of RAGE lacks information about the transmembrane domain which is necessary for signal transduction by the receptor. In this work, for the first time, using the cell-free expression method, we obtained and purified isotope-labeled fragment of RAGE (residues 335–368, corresponding to the RAGE transmembrane domain flanked by short juxtamembrane regions). For investigation of oligomerization processes we introduced a point oncogenic mutation G349R that is located in the conservative oligomerization motif GxxxG. Nuclear magnetic resonance (NMR) studies of both peptides incorporated into dodecylphosphocholine (DPC) micelles indirectly reveal changes in protein structure and oligomerization properties following the introduction of the oncogenic G349R mutation, which is thought to affect RAGE signaling.</p>\",\"PeriodicalId\":484,\"journal\":{\"name\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"volume\":\"19 1\",\"pages\":\"35 - 40\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990747824700429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747824700429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

晚期糖基化终产物受体(RAGE)在炎症和神经退行性疾病的发展中起重要作用。RAGE在健康细胞中不表达,但在导致组织损伤的炎症过程中会增加。RAGE有许多不同类别的配体,但具有相似的性质,因此RAGE作为一种模式识别受体。RAGE的结构缺乏跨膜结构域的信息,这是受体信号转导所必需的。本研究首次采用无细胞表达法,获得并纯化了RAGE的同位素标记片段(残基335-368,对应于RAGE跨膜结构域和短近膜区域)。为了研究寡聚化过程,我们引入了一个位于保守寡聚化基序GxxxG上的点致癌突变G349R。核磁共振(NMR)研究了纳入十二烷基磷脂胆碱(DPC)胶束的两种肽,间接揭示了在引入致癌基因G349R突变后蛋白质结构和寡聚化特性的变化,该突变被认为会影响RAGE信号传导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expression and Purification of Transmembrane Domain of RAGE for Structural-Dynamic NMR Studies

Receptor for advanced glycation endproducts (RAGE) plays an important role in the development of inflammation and neurodegenerative diseases. There is no expression of RAGE in healthy cells, but it increases during inflammation processes that leads to tissue damage. RAGE has many ligands of different classes but with similar properties, so RAGE acts as a pattern-recognition receptor. The structure of RAGE lacks information about the transmembrane domain which is necessary for signal transduction by the receptor. In this work, for the first time, using the cell-free expression method, we obtained and purified isotope-labeled fragment of RAGE (residues 335–368, corresponding to the RAGE transmembrane domain flanked by short juxtamembrane regions). For investigation of oligomerization processes we introduced a point oncogenic mutation G349R that is located in the conservative oligomerization motif GxxxG. Nuclear magnetic resonance (NMR) studies of both peptides incorporated into dodecylphosphocholine (DPC) micelles indirectly reveal changes in protein structure and oligomerization properties following the introduction of the oncogenic G349R mutation, which is thought to affect RAGE signaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
28
期刊介绍: Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology   is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信