粘性表面波方程低正则性强解的构造

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Guilong Gui, Yancan Li
{"title":"粘性表面波方程低正则性强解的构造","authors":"Guilong Gui,&nbsp;Yancan Li","doi":"10.1007/s00021-025-00936-0","DOIUrl":null,"url":null,"abstract":"<div><p>We construct in the paper the low-regularity strong solutions to the viscous surface wave equations in anisotropic Sobolev spaces. By using the Lagrangian structure of the system to homogenize the free boundary conditions coupled with the semigroup method of the linear operator, we establish a new iteration scheme on a known equilibrium domain to get the low-regularity strong solutions, in which no compatibility conditions of the accelerated velocity on the initial data are required.\n</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Low Regularity Strong Solutions to the Viscous Surface Wave Equations\",\"authors\":\"Guilong Gui,&nbsp;Yancan Li\",\"doi\":\"10.1007/s00021-025-00936-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct in the paper the low-regularity strong solutions to the viscous surface wave equations in anisotropic Sobolev spaces. By using the Lagrangian structure of the system to homogenize the free boundary conditions coupled with the semigroup method of the linear operator, we establish a new iteration scheme on a known equilibrium domain to get the low-regularity strong solutions, in which no compatibility conditions of the accelerated velocity on the initial data are required.\\n</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"27 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-025-00936-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00936-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文构造了各向异性Sobolev空间中粘性表面波方程的低正则性强解。利用系统的拉格朗日结构对自由边界条件进行均匀化,并结合线性算子的半群方法,在已知平衡域上建立了一种新的迭代格式,以得到不需要初始数据上加速度相容条件的低正则性强解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of Low Regularity Strong Solutions to the Viscous Surface Wave Equations

We construct in the paper the low-regularity strong solutions to the viscous surface wave equations in anisotropic Sobolev spaces. By using the Lagrangian structure of the system to homogenize the free boundary conditions coupled with the semigroup method of the linear operator, we establish a new iteration scheme on a known equilibrium domain to get the low-regularity strong solutions, in which no compatibility conditions of the accelerated velocity on the initial data are required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信