去离子水激光烧蚀法制备氧化锡纳米颗粒及其抗菌性能

IF 3.674 4区 工程技术 Q1 Engineering
Bashaer S. Faris, Ahmed N. Abd, Basaad H. Hamza
{"title":"去离子水激光烧蚀法制备氧化锡纳米颗粒及其抗菌性能","authors":"Bashaer S. Faris,&nbsp;Ahmed N. Abd,&nbsp;Basaad H. Hamza","doi":"10.1007/s13204-025-03091-0","DOIUrl":null,"url":null,"abstract":"<div><p>The unique shape of tin (II) oxide (SnO<sub>2</sub>) nanostructures in a colloidal solution is described. The nanostructures were synthesised using the pulsed Nd-YAG ablation technique, which entailed submerging small, high-quality tin particles in deionised water. The particles were coarsely crushed manually, filtered, and compacted into a solid tablet for 60 min using a 5-t hydraulic press. This production method utilised a pulse count of up to 200 laser shots, a wavelength of 1064 nm, spot size of 2.3 mm, focal length of 10 cm, and an energy of 500 mJ to examine the influence of surface shape on antibacterial activity levels. X-ray diffraction (XRD) analysis identified rhombohedral crystals mainly characterised by three Bragg peaks. Scanning electron microscopy (SEM) of the surface showed distinct and reasonably homogenous semispherical nanoparticles (NPs) rather than the expected porosity. The NPs exhibited an average size of 193.53 nm, in agreement with electron dispersive spectroscopy (EDS), which indicated that the oxygen-to-tin ratio closely approximated that of tin oxide (SnO<sub>2</sub>). In addition, the vibrational spectra measured with a Fourier transform infrared (FTIR) spectrometer indicated the synthesis of amber-coloured SnO<sub>2</sub> NPs, confirming their formation by the preparation process, as well as their light scattering and absorption characteristics. In addition, using UV–visible spectroscopy, the resulting energy gap was 2.4 eV, within the normal range of energy gap for SnO<sub>2</sub>. The generated NPs were discovered to suppress the growth of fungi and bacteria, indicating that they may prevent the development of these entities. Although the antibacterial and antifungal properties of tin oxide are not as well-known as those of silver or zinc oxide, this study demonstrated moderate antibacterial activity against the germs in question, making it a more secure and cost-effective alternative.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"15 3","pages":""},"PeriodicalIF":3.6740,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of tin (II) oxide nanoparticles using laser ablation in deionised water and their antimicrobial properties\",\"authors\":\"Bashaer S. Faris,&nbsp;Ahmed N. Abd,&nbsp;Basaad H. Hamza\",\"doi\":\"10.1007/s13204-025-03091-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The unique shape of tin (II) oxide (SnO<sub>2</sub>) nanostructures in a colloidal solution is described. The nanostructures were synthesised using the pulsed Nd-YAG ablation technique, which entailed submerging small, high-quality tin particles in deionised water. The particles were coarsely crushed manually, filtered, and compacted into a solid tablet for 60 min using a 5-t hydraulic press. This production method utilised a pulse count of up to 200 laser shots, a wavelength of 1064 nm, spot size of 2.3 mm, focal length of 10 cm, and an energy of 500 mJ to examine the influence of surface shape on antibacterial activity levels. X-ray diffraction (XRD) analysis identified rhombohedral crystals mainly characterised by three Bragg peaks. Scanning electron microscopy (SEM) of the surface showed distinct and reasonably homogenous semispherical nanoparticles (NPs) rather than the expected porosity. The NPs exhibited an average size of 193.53 nm, in agreement with electron dispersive spectroscopy (EDS), which indicated that the oxygen-to-tin ratio closely approximated that of tin oxide (SnO<sub>2</sub>). In addition, the vibrational spectra measured with a Fourier transform infrared (FTIR) spectrometer indicated the synthesis of amber-coloured SnO<sub>2</sub> NPs, confirming their formation by the preparation process, as well as their light scattering and absorption characteristics. In addition, using UV–visible spectroscopy, the resulting energy gap was 2.4 eV, within the normal range of energy gap for SnO<sub>2</sub>. The generated NPs were discovered to suppress the growth of fungi and bacteria, indicating that they may prevent the development of these entities. Although the antibacterial and antifungal properties of tin oxide are not as well-known as those of silver or zinc oxide, this study demonstrated moderate antibacterial activity against the germs in question, making it a more secure and cost-effective alternative.</p></div>\",\"PeriodicalId\":471,\"journal\":{\"name\":\"Applied Nanoscience\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":3.6740,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Nanoscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13204-025-03091-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-025-03091-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

描述了在胶体溶液中氧化锡(SnO2)纳米结构的独特形状。纳米结构是用脉冲Nd-YAG烧蚀技术合成的,该技术需要将小的、高质量的锡颗粒浸入去离子水中。用5吨液压机将颗粒粗粉碎、过滤、压实成固体片剂60分钟。该生产方法利用高达200次激光脉冲计数,波长为1064 nm,光斑尺寸为2.3 mm,焦距为10 cm,能量为500 mJ来检测表面形状对抗菌活性水平的影响。x射线衍射(XRD)分析鉴定出以三个布拉格峰为主要特征的菱形晶体。表面扫描电镜(SEM)显示明显且均匀的半球形纳米颗粒(NPs),而不是预期的孔隙率。电子色散光谱(EDS)显示NPs的平均尺寸为193.53 nm,这表明NPs的氧锡比与氧化锡(SnO2)的氧锡比非常接近。此外,傅里叶变换红外光谱仪(FTIR)测量的振动光谱表明合成了琥珀色SnO2 NPs,证实了其在制备过程中的形成,以及其光散射和吸收特性。此外,利用紫外可见光谱法,得到的能隙为2.4 eV,在SnO2的正常能隙范围内。所产生的NPs被发现抑制真菌和细菌的生长,表明它们可能阻止这些实体的发展。虽然氧化锡的抗菌和抗真菌特性不像银或氧化锌那样为人所知,但这项研究表明,氧化锡对所讨论的细菌具有适度的抗菌活性,使其成为一种更安全、更经济的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of tin (II) oxide nanoparticles using laser ablation in deionised water and their antimicrobial properties

The unique shape of tin (II) oxide (SnO2) nanostructures in a colloidal solution is described. The nanostructures were synthesised using the pulsed Nd-YAG ablation technique, which entailed submerging small, high-quality tin particles in deionised water. The particles were coarsely crushed manually, filtered, and compacted into a solid tablet for 60 min using a 5-t hydraulic press. This production method utilised a pulse count of up to 200 laser shots, a wavelength of 1064 nm, spot size of 2.3 mm, focal length of 10 cm, and an energy of 500 mJ to examine the influence of surface shape on antibacterial activity levels. X-ray diffraction (XRD) analysis identified rhombohedral crystals mainly characterised by three Bragg peaks. Scanning electron microscopy (SEM) of the surface showed distinct and reasonably homogenous semispherical nanoparticles (NPs) rather than the expected porosity. The NPs exhibited an average size of 193.53 nm, in agreement with electron dispersive spectroscopy (EDS), which indicated that the oxygen-to-tin ratio closely approximated that of tin oxide (SnO2). In addition, the vibrational spectra measured with a Fourier transform infrared (FTIR) spectrometer indicated the synthesis of amber-coloured SnO2 NPs, confirming their formation by the preparation process, as well as their light scattering and absorption characteristics. In addition, using UV–visible spectroscopy, the resulting energy gap was 2.4 eV, within the normal range of energy gap for SnO2. The generated NPs were discovered to suppress the growth of fungi and bacteria, indicating that they may prevent the development of these entities. Although the antibacterial and antifungal properties of tin oxide are not as well-known as those of silver or zinc oxide, this study demonstrated moderate antibacterial activity against the germs in question, making it a more secure and cost-effective alternative.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Nanoscience
Applied Nanoscience Materials Science-Materials Science (miscellaneous)
CiteScore
7.10
自引率
0.00%
发文量
430
期刊介绍: Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信