{"title":"交叉/磁化d膜模型中不可逆风味对称性的量子方面","authors":"Shuta Funakoshi, Tatsuo Kobayashi, Hajime Otsuka","doi":"10.1007/JHEP04(2025)183","DOIUrl":null,"url":null,"abstract":"<p>We discuss selection rules of chiral matters in type IIA intersecting and IIB magnetized D-brane models on toroidal orbifolds. Since the chiral matters on toroidal orbifolds are labeled by a certain conjugacy class of the gauged orbifold group, the selection rules involve non-trivial fusion rules. We find that the representation of the chiral matters is described by a <i>D</i><sub>4</sub> flavor symmetry for an even number of magnetic fluxes or winding numbers at tree level. Furthermore, the <i>D</i><sub>4</sub> symmetry still remains even when we take into account loop effects. We also study non-perturbative effects such as D-brane instantons.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)183.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantum aspects of non-invertible flavor symmetries in intersecting/magnetized D-brane models\",\"authors\":\"Shuta Funakoshi, Tatsuo Kobayashi, Hajime Otsuka\",\"doi\":\"10.1007/JHEP04(2025)183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We discuss selection rules of chiral matters in type IIA intersecting and IIB magnetized D-brane models on toroidal orbifolds. Since the chiral matters on toroidal orbifolds are labeled by a certain conjugacy class of the gauged orbifold group, the selection rules involve non-trivial fusion rules. We find that the representation of the chiral matters is described by a <i>D</i><sub>4</sub> flavor symmetry for an even number of magnetic fluxes or winding numbers at tree level. Furthermore, the <i>D</i><sub>4</sub> symmetry still remains even when we take into account loop effects. We also study non-perturbative effects such as D-brane instantons.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 4\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)183.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP04(2025)183\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)183","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Quantum aspects of non-invertible flavor symmetries in intersecting/magnetized D-brane models
We discuss selection rules of chiral matters in type IIA intersecting and IIB magnetized D-brane models on toroidal orbifolds. Since the chiral matters on toroidal orbifolds are labeled by a certain conjugacy class of the gauged orbifold group, the selection rules involve non-trivial fusion rules. We find that the representation of the chiral matters is described by a D4 flavor symmetry for an even number of magnetic fluxes or winding numbers at tree level. Furthermore, the D4 symmetry still remains even when we take into account loop effects. We also study non-perturbative effects such as D-brane instantons.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).