激光在Ti-Al-CuO粉末混合物中引发反应

IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. G. Knyazeva, M. G. Krinitcyn
{"title":"激光在Ti-Al-CuO粉末混合物中引发反应","authors":"A. G. Knyazeva,&nbsp;M. G. Krinitcyn","doi":"10.3103/S1061386224700365","DOIUrl":null,"url":null,"abstract":"<p>The paper described the data of a preliminary experiment on laser-initiated reactions in a mixture of Ti–Al–CuO powders. A two-dimensional model of laser initiation of reactions in a powder layer located on a substrate was presented. The laser beam moved along the surface according to a given trajectory. Chemical transformations were simulated by a total scheme including the main stages (decomposition of copper oxide CuO to Cu<sub>2</sub>O, metallothermic reactions leading to the formation of titanium and aluminum oxides, and the total reaction of matrix formation). The model was realized numerically. It was found that the process of composite synthesis can be divided into two stages. The first one consisted in partial decomposition of copper oxide; the second stage was a controlled process, when reactions took place only in the area of laser beam action. The results of the theory were found to be in qualitative agreement with the experimental data.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"34 1","pages":"1 - 9"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reaction Initiation by Laser in Ti–Al–CuO Powder Mixture\",\"authors\":\"A. G. Knyazeva,&nbsp;M. G. Krinitcyn\",\"doi\":\"10.3103/S1061386224700365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper described the data of a preliminary experiment on laser-initiated reactions in a mixture of Ti–Al–CuO powders. A two-dimensional model of laser initiation of reactions in a powder layer located on a substrate was presented. The laser beam moved along the surface according to a given trajectory. Chemical transformations were simulated by a total scheme including the main stages (decomposition of copper oxide CuO to Cu<sub>2</sub>O, metallothermic reactions leading to the formation of titanium and aluminum oxides, and the total reaction of matrix formation). The model was realized numerically. It was found that the process of composite synthesis can be divided into two stages. The first one consisted in partial decomposition of copper oxide; the second stage was a controlled process, when reactions took place only in the area of laser beam action. The results of the theory were found to be in qualitative agreement with the experimental data.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"34 1\",\"pages\":\"1 - 9\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1061386224700365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386224700365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了钛铝铜混合粉末激光引发反应的初步实验数据。建立了激光在衬底粉末层中引发反应的二维模型。激光束按照给定的轨迹沿着表面移动。采用包括主要阶段(氧化铜CuO分解为Cu2O、生成钛铝氧化物的金属热反应和生成基体总反应)的总方案模拟了化学转化过程。对模型进行了数值实现。结果表明,复合材料的合成过程可分为两个阶段。第一个是氧化铜的部分分解;第二阶段是受控过程,反应只发生在激光束作用的区域。理论结果与实验数据在定性上是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reaction Initiation by Laser in Ti–Al–CuO Powder Mixture

The paper described the data of a preliminary experiment on laser-initiated reactions in a mixture of Ti–Al–CuO powders. A two-dimensional model of laser initiation of reactions in a powder layer located on a substrate was presented. The laser beam moved along the surface according to a given trajectory. Chemical transformations were simulated by a total scheme including the main stages (decomposition of copper oxide CuO to Cu2O, metallothermic reactions leading to the formation of titanium and aluminum oxides, and the total reaction of matrix formation). The model was realized numerically. It was found that the process of composite synthesis can be divided into two stages. The first one consisted in partial decomposition of copper oxide; the second stage was a controlled process, when reactions took place only in the area of laser beam action. The results of the theory were found to be in qualitative agreement with the experimental data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
33.30%
发文量
27
期刊介绍: International Journal of Self-Propagating High-Temperature Synthesis  is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信