电沉积镍层提高氢氧化铁镍的碱性催化性能

IF 4.1 3区 化学 Q1 CHEMISTRY, ANALYTICAL
Jing Wang , Zikang Zhao , Li Ji , Yan Wang , Ying Zhang , Shan Song , Junshuang Zhou , Faming Gao
{"title":"电沉积镍层提高氢氧化铁镍的碱性催化性能","authors":"Jing Wang ,&nbsp;Zikang Zhao ,&nbsp;Li Ji ,&nbsp;Yan Wang ,&nbsp;Ying Zhang ,&nbsp;Shan Song ,&nbsp;Junshuang Zhou ,&nbsp;Faming Gao","doi":"10.1016/j.jelechem.2025.119132","DOIUrl":null,"url":null,"abstract":"<div><div>Alkaline electrocatalysts are key to achieving cost-effective and environmentally friendly hydrogen production due to their low cost, high stability, and compatibility with renewable energy sources. This study successfully prepared a Ni@NiFeOOH/IF sample with excellent catalytic performance by electrodeposition of a nickel thin layer on NiFeOOH. The overpotentials for HER and OER of this sample were only 230 mV and 252 mV, respectively, at a current density of 500 mA cm<sup>−2</sup>. Characterization techniques such as SEM, TEM, XRD, Raman spectroscopy, and XPS confirmed the presence of the nickel layer and its role in enhancing electron transfer rates and electrical conductivity. In an alkaline environment, the Ni@NiFeOOH/IF electrode not only exhibited outstanding HER and OER performance and good stability but also showed excellent performance in full water splitting tests under high-temperature and high-concentration conditions, offering a reliable possibility for industrial applications. This research provides a new approach for the development of efficient and stable non-noble metal water splitting catalysts.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"988 ","pages":"Article 119132"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrodeposition of nickel layer to enhance the alkaline catalytic performance of nickel‑iron oxyhydroxide\",\"authors\":\"Jing Wang ,&nbsp;Zikang Zhao ,&nbsp;Li Ji ,&nbsp;Yan Wang ,&nbsp;Ying Zhang ,&nbsp;Shan Song ,&nbsp;Junshuang Zhou ,&nbsp;Faming Gao\",\"doi\":\"10.1016/j.jelechem.2025.119132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alkaline electrocatalysts are key to achieving cost-effective and environmentally friendly hydrogen production due to their low cost, high stability, and compatibility with renewable energy sources. This study successfully prepared a Ni@NiFeOOH/IF sample with excellent catalytic performance by electrodeposition of a nickel thin layer on NiFeOOH. The overpotentials for HER and OER of this sample were only 230 mV and 252 mV, respectively, at a current density of 500 mA cm<sup>−2</sup>. Characterization techniques such as SEM, TEM, XRD, Raman spectroscopy, and XPS confirmed the presence of the nickel layer and its role in enhancing electron transfer rates and electrical conductivity. In an alkaline environment, the Ni@NiFeOOH/IF electrode not only exhibited outstanding HER and OER performance and good stability but also showed excellent performance in full water splitting tests under high-temperature and high-concentration conditions, offering a reliable possibility for industrial applications. This research provides a new approach for the development of efficient and stable non-noble metal water splitting catalysts.</div></div>\",\"PeriodicalId\":355,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"988 \",\"pages\":\"Article 119132\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665725002061\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665725002061","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

碱性电催化剂因其低成本、高稳定性以及与可再生能源的兼容性,成为实现经济高效、环保制氢的关键。本研究通过在 NiFeOOH 上电沉积镍薄层,成功制备了具有优异催化性能的 Ni@NiFeOOH/IF 样品。在电流密度为 500 mA cm-2 时,该样品的 HER 和 OER 过电位分别仅为 230 mV 和 252 mV。SEM、TEM、XRD、拉曼光谱和 XPS 等表征技术证实了镍层的存在及其在提高电子转移率和导电性方面的作用。在碱性环境中,Ni@NiFeOOH/IF 电极不仅表现出卓越的 HER 和 OER 性能以及良好的稳定性,而且在高温和高浓度条件下的全水分裂试验中也表现出优异的性能,为工业应用提供了可靠的可能性。这项研究为开发高效、稳定的非贵金属水分离催化剂提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrodeposition of nickel layer to enhance the alkaline catalytic performance of nickel‑iron oxyhydroxide
Alkaline electrocatalysts are key to achieving cost-effective and environmentally friendly hydrogen production due to their low cost, high stability, and compatibility with renewable energy sources. This study successfully prepared a Ni@NiFeOOH/IF sample with excellent catalytic performance by electrodeposition of a nickel thin layer on NiFeOOH. The overpotentials for HER and OER of this sample were only 230 mV and 252 mV, respectively, at a current density of 500 mA cm−2. Characterization techniques such as SEM, TEM, XRD, Raman spectroscopy, and XPS confirmed the presence of the nickel layer and its role in enhancing electron transfer rates and electrical conductivity. In an alkaline environment, the Ni@NiFeOOH/IF electrode not only exhibited outstanding HER and OER performance and good stability but also showed excellent performance in full water splitting tests under high-temperature and high-concentration conditions, offering a reliable possibility for industrial applications. This research provides a new approach for the development of efficient and stable non-noble metal water splitting catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
6.70%
发文量
912
审稿时长
2.4 months
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信