Matteo Meli , Zezhou Wang , Stefan Sterlepper , Mario Picerno , Stefan Pischinger
{"title":"数据驱动的内燃机控制预校准参数优化","authors":"Matteo Meli , Zezhou Wang , Stefan Sterlepper , Mario Picerno , Stefan Pischinger","doi":"10.1016/j.apenergy.2025.125893","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an efficient pre-calibration method for combustion engine controls. In particular, it focuses on the initial shaping of multiple Lookup Tables (LUTs) within LUT-based Multiple-Input Single-Output (MISO) engine control systems. The approach addresses the increasing complexity of engine software, the rising number of calibration variables, and the time pressures prevalent in automotive development. Employing a white-box Model-in-the-Loop (MiL) optimization reduces the demands on hardware reliance and optimization time compared to conventional engine calibration techniques. The white-box model enables the pre-calibration of LUTs using known system inputs, expected system outputs, and the control system model structure. To optimize the white-box control system model, LUTs are parametrized through Rational Bézier Regression (RBR), facilitating Sequential Quadratic Programming (SQP) for optimization. RBR, which includes both Rational Bézier Curve Regression (RBCR) and Rational Bézier Surface Regression (RBSR), allows for flexible and smooth shaping of 1D and 2D LUTs with a unified and few number of parameters. The pre-calibration process is further improved using historical calibration data from various vehicle variants stored in a relational database. This ensures that the final outputs of the LUT-based MISO control system closely approximate the expected target outputs with high shape similarity. The proposed method is exemplified using an oil temperature control model from a state-of-the-art hybrid powertrain with an internal combustion engine. The results demonstrate Pearson Correlation Coefficients (PCCs) exceeding 0.8 between target and pre-calibrated LUTs, indicative of high shape similarity. Additionally, the system outputs of pre-calibrated control system models closely match expected system outputs with an <span><math><msup><mi>R</mi><mn>2</mn></msup></math></span> value of <span><math><mn>0.9385</mn></math></span>. This underscores the practical applicability of the proposed pre-calibration method for internal combustion engine controls.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"392 ","pages":"Article 125893"},"PeriodicalIF":10.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven parametric optimization for pre-calibration of internal combustion engine controls\",\"authors\":\"Matteo Meli , Zezhou Wang , Stefan Sterlepper , Mario Picerno , Stefan Pischinger\",\"doi\":\"10.1016/j.apenergy.2025.125893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an efficient pre-calibration method for combustion engine controls. In particular, it focuses on the initial shaping of multiple Lookup Tables (LUTs) within LUT-based Multiple-Input Single-Output (MISO) engine control systems. The approach addresses the increasing complexity of engine software, the rising number of calibration variables, and the time pressures prevalent in automotive development. Employing a white-box Model-in-the-Loop (MiL) optimization reduces the demands on hardware reliance and optimization time compared to conventional engine calibration techniques. The white-box model enables the pre-calibration of LUTs using known system inputs, expected system outputs, and the control system model structure. To optimize the white-box control system model, LUTs are parametrized through Rational Bézier Regression (RBR), facilitating Sequential Quadratic Programming (SQP) for optimization. RBR, which includes both Rational Bézier Curve Regression (RBCR) and Rational Bézier Surface Regression (RBSR), allows for flexible and smooth shaping of 1D and 2D LUTs with a unified and few number of parameters. The pre-calibration process is further improved using historical calibration data from various vehicle variants stored in a relational database. This ensures that the final outputs of the LUT-based MISO control system closely approximate the expected target outputs with high shape similarity. The proposed method is exemplified using an oil temperature control model from a state-of-the-art hybrid powertrain with an internal combustion engine. The results demonstrate Pearson Correlation Coefficients (PCCs) exceeding 0.8 between target and pre-calibrated LUTs, indicative of high shape similarity. Additionally, the system outputs of pre-calibrated control system models closely match expected system outputs with an <span><math><msup><mi>R</mi><mn>2</mn></msup></math></span> value of <span><math><mn>0.9385</mn></math></span>. This underscores the practical applicability of the proposed pre-calibration method for internal combustion engine controls.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"392 \",\"pages\":\"Article 125893\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925006233\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925006233","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Data-driven parametric optimization for pre-calibration of internal combustion engine controls
This paper presents an efficient pre-calibration method for combustion engine controls. In particular, it focuses on the initial shaping of multiple Lookup Tables (LUTs) within LUT-based Multiple-Input Single-Output (MISO) engine control systems. The approach addresses the increasing complexity of engine software, the rising number of calibration variables, and the time pressures prevalent in automotive development. Employing a white-box Model-in-the-Loop (MiL) optimization reduces the demands on hardware reliance and optimization time compared to conventional engine calibration techniques. The white-box model enables the pre-calibration of LUTs using known system inputs, expected system outputs, and the control system model structure. To optimize the white-box control system model, LUTs are parametrized through Rational Bézier Regression (RBR), facilitating Sequential Quadratic Programming (SQP) for optimization. RBR, which includes both Rational Bézier Curve Regression (RBCR) and Rational Bézier Surface Regression (RBSR), allows for flexible and smooth shaping of 1D and 2D LUTs with a unified and few number of parameters. The pre-calibration process is further improved using historical calibration data from various vehicle variants stored in a relational database. This ensures that the final outputs of the LUT-based MISO control system closely approximate the expected target outputs with high shape similarity. The proposed method is exemplified using an oil temperature control model from a state-of-the-art hybrid powertrain with an internal combustion engine. The results demonstrate Pearson Correlation Coefficients (PCCs) exceeding 0.8 between target and pre-calibrated LUTs, indicative of high shape similarity. Additionally, the system outputs of pre-calibrated control system models closely match expected system outputs with an value of . This underscores the practical applicability of the proposed pre-calibration method for internal combustion engine controls.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.