{"title":"一类具有临界平流项的椭圆方程的非径向正解","authors":"A. Aghajani , C. Cowan","doi":"10.1016/j.jde.2025.113346","DOIUrl":null,"url":null,"abstract":"<div><div>Consider the problem<span><span><span>(1)</span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mfrac><mrow><mi>β</mi><mi>x</mi><mo>⋅</mo><mi>∇</mi><mi>u</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>+</mo><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>p</mi><mo>></mo><mn>2</mn></math></span>, <span><math><mi>β</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>N</mi><mo>=</mo><mn>2</mn><mi>n</mi><mo>≥</mo><mn>4</mn></math></span> an even integer. In this work we are interested in finding positive classical nonradial solutions of <span><span>(1)</span></span>. We also consider the problem on the unit ball. We demonstrate the existence of a positive bounded solution for the range <span><math><mn>2</mn><mo><</mo><mi>p</mi><mo><</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>2</mn><mi>β</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mo>+</mo><mi>β</mi></mrow></mfrac></math></span>, and show that nonradial solutions exist for a specific range of <em>p</em>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"436 ","pages":"Article 113346"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive nonradial solutions of an elliptic equation with critical advection term\",\"authors\":\"A. Aghajani , C. Cowan\",\"doi\":\"10.1016/j.jde.2025.113346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Consider the problem<span><span><span>(1)</span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mfrac><mrow><mi>β</mi><mi>x</mi><mo>⋅</mo><mi>∇</mi><mi>u</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>+</mo><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>p</mi><mo>></mo><mn>2</mn></math></span>, <span><math><mi>β</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>N</mi><mo>=</mo><mn>2</mn><mi>n</mi><mo>≥</mo><mn>4</mn></math></span> an even integer. In this work we are interested in finding positive classical nonradial solutions of <span><span>(1)</span></span>. We also consider the problem on the unit ball. We demonstrate the existence of a positive bounded solution for the range <span><math><mn>2</mn><mo><</mo><mi>p</mi><mo><</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>2</mn><mi>β</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mo>+</mo><mi>β</mi></mrow></mfrac></math></span>, and show that nonradial solutions exist for a specific range of <em>p</em>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"436 \",\"pages\":\"Article 113346\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625003730\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003730","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Positive nonradial solutions of an elliptic equation with critical advection term
Consider the problem(1) where , and an even integer. In this work we are interested in finding positive classical nonradial solutions of (1). We also consider the problem on the unit ball. We demonstrate the existence of a positive bounded solution for the range , and show that nonradial solutions exist for a specific range of p.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics