一类具有临界平流项的椭圆方程的非径向正解

IF 2.4 2区 数学 Q1 MATHEMATICS
A. Aghajani , C. Cowan
{"title":"一类具有临界平流项的椭圆方程的非径向正解","authors":"A. Aghajani ,&nbsp;C. Cowan","doi":"10.1016/j.jde.2025.113346","DOIUrl":null,"url":null,"abstract":"<div><div>Consider the problem<span><span><span>(1)</span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mfrac><mrow><mi>β</mi><mi>x</mi><mo>⋅</mo><mi>∇</mi><mi>u</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>+</mo><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>p</mi><mo>&gt;</mo><mn>2</mn></math></span>, <span><math><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mi>N</mi><mo>=</mo><mn>2</mn><mi>n</mi><mo>≥</mo><mn>4</mn></math></span> an even integer. In this work we are interested in finding positive classical nonradial solutions of <span><span>(1)</span></span>. We also consider the problem on the unit ball. We demonstrate the existence of a positive bounded solution for the range <span><math><mn>2</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>2</mn><mi>β</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mo>+</mo><mi>β</mi></mrow></mfrac></math></span>, and show that nonradial solutions exist for a specific range of <em>p</em>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"436 ","pages":"Article 113346"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive nonradial solutions of an elliptic equation with critical advection term\",\"authors\":\"A. Aghajani ,&nbsp;C. Cowan\",\"doi\":\"10.1016/j.jde.2025.113346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Consider the problem<span><span><span>(1)</span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mfrac><mrow><mi>β</mi><mi>x</mi><mo>⋅</mo><mi>∇</mi><mi>u</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>+</mo><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>p</mi><mo>&gt;</mo><mn>2</mn></math></span>, <span><math><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mi>N</mi><mo>=</mo><mn>2</mn><mi>n</mi><mo>≥</mo><mn>4</mn></math></span> an even integer. In this work we are interested in finding positive classical nonradial solutions of <span><span>(1)</span></span>. We also consider the problem on the unit ball. We demonstrate the existence of a positive bounded solution for the range <span><math><mn>2</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>2</mn><mi>β</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mo>+</mo><mi>β</mi></mrow></mfrac></math></span>, and show that nonradial solutions exist for a specific range of <em>p</em>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"436 \",\"pages\":\"Article 113346\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625003730\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003730","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑RN中的问题(1)−Δu−βx⋅∇u|x|2+u=up−1,其中p>;2, β>0, N=2n≥4为偶数。在这项工作中,我们感兴趣的是寻找(1)的正经典非径向解。我们还考虑了单位球上的问题。我们证明了2<;p<pβ:=N+2βN−2+β的正有界解的存在性,并证明了在p的特定范围内存在非径向解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive nonradial solutions of an elliptic equation with critical advection term
Consider the problem(1)Δuβxu|x|2+u=up1 in RN, where p>2, β>0 and N=2n4 an even integer. In this work we are interested in finding positive classical nonradial solutions of (1). We also consider the problem on the unit ball. We demonstrate the existence of a positive bounded solution for the range 2<p<pβ:=N+2βN2+β, and show that nonradial solutions exist for a specific range of p.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信