具有时空阻尼的一维p-系统Cauchy问题解的渐近性质:案例1。v + =− v

IF 2.4 2区 数学 Q1 MATHEMATICS
Yang Cai , Changchun Liu , Ming Mei , Zejia Wang
{"title":"具有时空阻尼的一维p-系统Cauchy问题解的渐近性质:案例1。v + =− v","authors":"Yang Cai ,&nbsp;Changchun Liu ,&nbsp;Ming Mei ,&nbsp;Zejia Wang","doi":"10.1016/j.jde.2025.113347","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the Cauchy problem for the <em>p</em>-system with spatiotemporal damping, modeling one-dimensional compressible flow through porous media in Lagrangian coordinates. We focus on the large-time asymptotic behavior of the system's solutions when the state constants for the specific volume are the same: <span><math><msub><mrow><mi>v</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mo>−</mo></mrow></msub></math></span>, but the state constants for the velocity are different: <span><math><msub><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>≠</mo><msub><mrow><mi>u</mi></mrow><mrow><mo>−</mo></mrow></msub></math></span>. We show the convergence of the solutions to their diffusion waves with the different algebraic time decay rates according to different exponent of time-damping: <span><math><mn>0</mn><mo>≤</mo><mi>λ</mi><mo>&lt;</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>, <span><math><mi>λ</mi><mo>=</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>&lt;</mo><mi>λ</mi><mo>&lt;</mo><mn>1</mn></math></span>, respectively. Our analysis employs an energy method to establish a series of a priori estimates, offering new insights and theoretical support for understanding the long-time dynamics of compressible flows in porous media with spatially heterogeneous damping.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"436 ","pages":"Article 113347"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior of solutions to the Cauchy problem for 1D p-system with spatiotemporal damping: Case 1. v+ = v−\",\"authors\":\"Yang Cai ,&nbsp;Changchun Liu ,&nbsp;Ming Mei ,&nbsp;Zejia Wang\",\"doi\":\"10.1016/j.jde.2025.113347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the Cauchy problem for the <em>p</em>-system with spatiotemporal damping, modeling one-dimensional compressible flow through porous media in Lagrangian coordinates. We focus on the large-time asymptotic behavior of the system's solutions when the state constants for the specific volume are the same: <span><math><msub><mrow><mi>v</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mo>−</mo></mrow></msub></math></span>, but the state constants for the velocity are different: <span><math><msub><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>≠</mo><msub><mrow><mi>u</mi></mrow><mrow><mo>−</mo></mrow></msub></math></span>. We show the convergence of the solutions to their diffusion waves with the different algebraic time decay rates according to different exponent of time-damping: <span><math><mn>0</mn><mo>≤</mo><mi>λ</mi><mo>&lt;</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>, <span><math><mi>λ</mi><mo>=</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>&lt;</mo><mi>λ</mi><mo>&lt;</mo><mn>1</mn></math></span>, respectively. Our analysis employs an energy method to establish a series of a priori estimates, offering new insights and theoretical support for understanding the long-time dynamics of compressible flows in porous media with spatially heterogeneous damping.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"436 \",\"pages\":\"Article 113347\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625003742\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003742","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有时空阻尼的p-系统的柯西问题,在拉格朗日坐标系中模拟了一维多孔介质的可压缩流动。我们关注的是当特定体积的状态常数相同:v+=v−,但速度的状态常数不同:u+≠u−时系统解的大时渐近行为。在不同的时间阻尼指数(0≤λ<35, λ=35, 35<λ<1)下,证明了它们的扩散波解具有不同代数时间衰减率的收敛性。我们的分析采用能量方法建立了一系列先验估计,为理解具有空间非均质阻尼的多孔介质中可压缩流动的长期动力学提供了新的见解和理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic behavior of solutions to the Cauchy problem for 1D p-system with spatiotemporal damping: Case 1. v+ = v−
This paper investigates the Cauchy problem for the p-system with spatiotemporal damping, modeling one-dimensional compressible flow through porous media in Lagrangian coordinates. We focus on the large-time asymptotic behavior of the system's solutions when the state constants for the specific volume are the same: v+=v, but the state constants for the velocity are different: u+u. We show the convergence of the solutions to their diffusion waves with the different algebraic time decay rates according to different exponent of time-damping: 0λ<35, λ=35 and 35<λ<1, respectively. Our analysis employs an energy method to establish a series of a priori estimates, offering new insights and theoretical support for understanding the long-time dynamics of compressible flows in porous media with spatially heterogeneous damping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信