基于分数阶优化的广义学习系统

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Dan Zhang , Tong Zhang , Zhang Tao , C.L. Philip Chen
{"title":"基于分数阶优化的广义学习系统","authors":"Dan Zhang ,&nbsp;Tong Zhang ,&nbsp;Zhang Tao ,&nbsp;C.L. Philip Chen","doi":"10.1016/j.neunet.2025.107468","DOIUrl":null,"url":null,"abstract":"<div><div>Due to its efficient incremental learning performance, the broad learning system (BLS) has received widespread attention in the field of machine learning. Scholars have found in algorithm research that using the maximum correntropy criterion (MCC) can further improves the performance of broad learning in handling outliers. Recent studies have shown that differential equations can be used to represent the forward propagation of deep learning. The BLS based on MCC uses differentiation to optimize parameters, which indicates that differential methods can also be used for BLS optimization. But general methods use integer order differential equations, ignoring system information between integer orders. Due to the long-term memory property of fractional differential equations, this paper innovatively introduces fractional order optimization into the BLS, called FOBLS, to better enhance the data processing capability of the BLS. Firstly, a BLS is constructed using fractional order, incorporating long-term memory characteristics into the weight optimization process. In addition, constructing a dynamic incremental learning system based on fractional order further enhances the ability of network optimization. The experimental results demonstrate the excellent performance of the method proposed in this paper.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107468"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broad learning system based on fractional order optimization\",\"authors\":\"Dan Zhang ,&nbsp;Tong Zhang ,&nbsp;Zhang Tao ,&nbsp;C.L. Philip Chen\",\"doi\":\"10.1016/j.neunet.2025.107468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to its efficient incremental learning performance, the broad learning system (BLS) has received widespread attention in the field of machine learning. Scholars have found in algorithm research that using the maximum correntropy criterion (MCC) can further improves the performance of broad learning in handling outliers. Recent studies have shown that differential equations can be used to represent the forward propagation of deep learning. The BLS based on MCC uses differentiation to optimize parameters, which indicates that differential methods can also be used for BLS optimization. But general methods use integer order differential equations, ignoring system information between integer orders. Due to the long-term memory property of fractional differential equations, this paper innovatively introduces fractional order optimization into the BLS, called FOBLS, to better enhance the data processing capability of the BLS. Firstly, a BLS is constructed using fractional order, incorporating long-term memory characteristics into the weight optimization process. In addition, constructing a dynamic incremental learning system based on fractional order further enhances the ability of network optimization. The experimental results demonstrate the excellent performance of the method proposed in this paper.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"188 \",\"pages\":\"Article 107468\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608025003478\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025003478","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

广义学习系统(BLS)由于其高效的增量学习性能,在机器学习领域受到了广泛的关注。学者们在算法研究中发现,使用最大熵准则(MCC)可以进一步提高广义学习处理离群值的性能。最近的研究表明,微分方程可以用来表示深度学习的前向传播。基于MCC的BLS采用微分方法对参数进行优化,表明微分方法也可用于BLS优化。但一般方法使用的是整数阶微分方程,忽略了整数阶间的系统信息。由于分数阶微分方程具有长时记忆的特性,本文创新性地将分数阶优化引入到BLS中,称为FOBLS,以更好地增强BLS的数据处理能力。首先,采用分数阶构造BLS,将长时记忆特征纳入权重优化过程;此外,构建了基于分数阶的动态增量学习系统,进一步增强了网络优化的能力。实验结果证明了该方法的优良性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Broad learning system based on fractional order optimization
Due to its efficient incremental learning performance, the broad learning system (BLS) has received widespread attention in the field of machine learning. Scholars have found in algorithm research that using the maximum correntropy criterion (MCC) can further improves the performance of broad learning in handling outliers. Recent studies have shown that differential equations can be used to represent the forward propagation of deep learning. The BLS based on MCC uses differentiation to optimize parameters, which indicates that differential methods can also be used for BLS optimization. But general methods use integer order differential equations, ignoring system information between integer orders. Due to the long-term memory property of fractional differential equations, this paper innovatively introduces fractional order optimization into the BLS, called FOBLS, to better enhance the data processing capability of the BLS. Firstly, a BLS is constructed using fractional order, incorporating long-term memory characteristics into the weight optimization process. In addition, constructing a dynamic incremental learning system based on fractional order further enhances the ability of network optimization. The experimental results demonstrate the excellent performance of the method proposed in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信