{"title":"可扩展点云变压器的自适应令牌选择","authors":"Alessandro Baiocchi , Indro Spinelli , Alessandro Nicolosi , Simone Scardapane","doi":"10.1016/j.neunet.2025.107477","DOIUrl":null,"url":null,"abstract":"<div><div>The recent surge in 3D data acquisition has spurred the development of geometric deep learning models for point cloud processing, boosted by the remarkable success of transformers in natural language processing. While point cloud transformers (PTs) have achieved impressive results recently, their quadratic scaling with respect to the point cloud size poses a significant scalability challenge for real-world applications. To address this issue, we propose the Adaptive Point Cloud Transformer (AdaPT), a standard PT model augmented by an adaptive token selection mechanism. AdaPT dynamically reduces the number of tokens during inference, enabling efficient processing of large point clouds. Furthermore, we introduce a budget mechanism to flexibly adjust the computational cost of the model at inference time without the need for retraining or fine-tuning separate models. Our extensive experimental evaluation on point cloud classification tasks demonstrates that AdaPT significantly reduces computational complexity while maintaining competitive accuracy compared to standard PTs. The code for AdaPT is publicly available at <span><span>https://github.com/ispamm/adaPT</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107477"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive token selection for scalable point cloud transformers\",\"authors\":\"Alessandro Baiocchi , Indro Spinelli , Alessandro Nicolosi , Simone Scardapane\",\"doi\":\"10.1016/j.neunet.2025.107477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The recent surge in 3D data acquisition has spurred the development of geometric deep learning models for point cloud processing, boosted by the remarkable success of transformers in natural language processing. While point cloud transformers (PTs) have achieved impressive results recently, their quadratic scaling with respect to the point cloud size poses a significant scalability challenge for real-world applications. To address this issue, we propose the Adaptive Point Cloud Transformer (AdaPT), a standard PT model augmented by an adaptive token selection mechanism. AdaPT dynamically reduces the number of tokens during inference, enabling efficient processing of large point clouds. Furthermore, we introduce a budget mechanism to flexibly adjust the computational cost of the model at inference time without the need for retraining or fine-tuning separate models. Our extensive experimental evaluation on point cloud classification tasks demonstrates that AdaPT significantly reduces computational complexity while maintaining competitive accuracy compared to standard PTs. The code for AdaPT is publicly available at <span><span>https://github.com/ispamm/adaPT</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"188 \",\"pages\":\"Article 107477\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608025003569\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025003569","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Adaptive token selection for scalable point cloud transformers
The recent surge in 3D data acquisition has spurred the development of geometric deep learning models for point cloud processing, boosted by the remarkable success of transformers in natural language processing. While point cloud transformers (PTs) have achieved impressive results recently, their quadratic scaling with respect to the point cloud size poses a significant scalability challenge for real-world applications. To address this issue, we propose the Adaptive Point Cloud Transformer (AdaPT), a standard PT model augmented by an adaptive token selection mechanism. AdaPT dynamically reduces the number of tokens during inference, enabling efficient processing of large point clouds. Furthermore, we introduce a budget mechanism to flexibly adjust the computational cost of the model at inference time without the need for retraining or fine-tuning separate models. Our extensive experimental evaluation on point cloud classification tasks demonstrates that AdaPT significantly reduces computational complexity while maintaining competitive accuracy compared to standard PTs. The code for AdaPT is publicly available at https://github.com/ispamm/adaPT.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.