通过原子Pt负载电子调制非晶/结晶NiFe LDH,实现在碱性水和海水中的工业制氢

IF 13.1 1区 化学 Q1 Energy
Boxue Wang , Zhongge Luo , Huachuan Sun , Mingpeng Chen , Yumin Zhang , Xinru Zhao , Guoyang Qiu , Bin Xiao , Tong Zhou , Qinjie Lu , Dequan Li , Yuewen Wu , Yuxiao Zhang , Jianhong Zhao , Jin Zhang , Hao Cui , Feng Liu , Tianwei He , Qingju Liu
{"title":"通过原子Pt负载电子调制非晶/结晶NiFe LDH,实现在碱性水和海水中的工业制氢","authors":"Boxue Wang ,&nbsp;Zhongge Luo ,&nbsp;Huachuan Sun ,&nbsp;Mingpeng Chen ,&nbsp;Yumin Zhang ,&nbsp;Xinru Zhao ,&nbsp;Guoyang Qiu ,&nbsp;Bin Xiao ,&nbsp;Tong Zhou ,&nbsp;Qinjie Lu ,&nbsp;Dequan Li ,&nbsp;Yuewen Wu ,&nbsp;Yuxiao Zhang ,&nbsp;Jianhong Zhao ,&nbsp;Jin Zhang ,&nbsp;Hao Cui ,&nbsp;Feng Liu ,&nbsp;Tianwei He ,&nbsp;Qingju Liu","doi":"10.1016/j.jechem.2025.03.053","DOIUrl":null,"url":null,"abstract":"<div><div>The reasonable development and design of high-efficiency and low-cost electrocatalysts for hydrogen evolution reaction (HER) under industrial current densities are imperative for achieving carbon neutrality, while also posing challenges. In this study, an efficient electrocatalyst is successfully constructed through electrodeposition methods, which consists of monodispersed Pt loaded on amorphous/crystalline nickel–iron layered double hydroxide (Pt-SAs/ac-NiFe LDH). The Pt-SAs/ac-NiFe LDH demonstrates an elevated mass activity of 17.66 A mg<sub>Pt</sub><sup>−1</sup> and a significant turnover frequency of 17.90 s<sup>−1</sup> for HER in alkaline conditions under the overpotential of 100 mV. Meanwhile, for alkaline freshwater and seawater, Pt-SAs/ac-NiFe LDH exhibits ultra-low overpotentials of 141 and 138 mV to reach 1000 mA cm<sup>−2</sup>, respectively. Remarkably, it maintains stable operation for 100 h at 500 mA cm<sup>−2</sup>, showcasing its robustness and reliability. <em>In situ</em> Raman spectra reveal that Pt single atoms (Pt-SAs) accelerate interfacial water dissociation, thereby enhancing the HER kinetics in Pt-SAs/ac-NiFe LDH. Furthermore, theoretical calculation results show significant electronic interaction between the Pt-SAs and the ac-NiFe LDH support. The interaction significantly enhances water adsorption and dissociation, and balances the adsorption/desorption of hydrogen intermediates, ultimately improving HER performance. This research provides a viable method for designing efficient HER catalysts for water electrolysis in alkaline freshwater and seawater under industrial current densities.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"107 ","pages":"Pages 427-439"},"PeriodicalIF":13.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic modulation of amorphous/crystalline NiFe LDH by atomic Pt loading enabling industrial hydrogen production in alkaline water and seawater\",\"authors\":\"Boxue Wang ,&nbsp;Zhongge Luo ,&nbsp;Huachuan Sun ,&nbsp;Mingpeng Chen ,&nbsp;Yumin Zhang ,&nbsp;Xinru Zhao ,&nbsp;Guoyang Qiu ,&nbsp;Bin Xiao ,&nbsp;Tong Zhou ,&nbsp;Qinjie Lu ,&nbsp;Dequan Li ,&nbsp;Yuewen Wu ,&nbsp;Yuxiao Zhang ,&nbsp;Jianhong Zhao ,&nbsp;Jin Zhang ,&nbsp;Hao Cui ,&nbsp;Feng Liu ,&nbsp;Tianwei He ,&nbsp;Qingju Liu\",\"doi\":\"10.1016/j.jechem.2025.03.053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The reasonable development and design of high-efficiency and low-cost electrocatalysts for hydrogen evolution reaction (HER) under industrial current densities are imperative for achieving carbon neutrality, while also posing challenges. In this study, an efficient electrocatalyst is successfully constructed through electrodeposition methods, which consists of monodispersed Pt loaded on amorphous/crystalline nickel–iron layered double hydroxide (Pt-SAs/ac-NiFe LDH). The Pt-SAs/ac-NiFe LDH demonstrates an elevated mass activity of 17.66 A mg<sub>Pt</sub><sup>−1</sup> and a significant turnover frequency of 17.90 s<sup>−1</sup> for HER in alkaline conditions under the overpotential of 100 mV. Meanwhile, for alkaline freshwater and seawater, Pt-SAs/ac-NiFe LDH exhibits ultra-low overpotentials of 141 and 138 mV to reach 1000 mA cm<sup>−2</sup>, respectively. Remarkably, it maintains stable operation for 100 h at 500 mA cm<sup>−2</sup>, showcasing its robustness and reliability. <em>In situ</em> Raman spectra reveal that Pt single atoms (Pt-SAs) accelerate interfacial water dissociation, thereby enhancing the HER kinetics in Pt-SAs/ac-NiFe LDH. Furthermore, theoretical calculation results show significant electronic interaction between the Pt-SAs and the ac-NiFe LDH support. The interaction significantly enhances water adsorption and dissociation, and balances the adsorption/desorption of hydrogen intermediates, ultimately improving HER performance. This research provides a viable method for designing efficient HER catalysts for water electrolysis in alkaline freshwater and seawater under industrial current densities.</div></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":\"107 \",\"pages\":\"Pages 427-439\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495625002682\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625002682","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

在工业电流密度下,合理开发和设计高效、低成本的析氢反应电催化剂是实现碳中和的必要条件,同时也提出了挑战。在本研究中,通过电沉积方法成功构建了一种高效的电催化剂,该催化剂由负载在非晶/结晶镍铁层状双氢氧化物(Pt- sas /ac-NiFe - LDH)上的单分散Pt组成。Pt-SAs/ac-NiFe LDH在碱性条件下的过电位为100 mV,质量活性为17.66 A mgPt−1,翻转频率为17.90 s−1。同时,在碱性淡水和海水中,Pt-SAs/ac-NiFe LDH表现出141和138 mV的超低过电位,分别达到1000 mA cm−2。值得注意的是,它在500 mA cm−2下可以稳定运行100小时,显示了它的鲁棒性和可靠性。原位拉曼光谱显示,Pt单原子(Pt- sas)加速了界面水解离,从而增强了Pt- sas /ac-NiFe LDH中的HER动力学。此外,理论计算结果表明,pt - sa和ac-NiFe LDH载体之间存在显著的电子相互作用。这种相互作用显著增强了水的吸附和解离,并平衡了氢中间体的吸附/解吸,最终提高了HER的性能。本研究为工业电流密度下碱性淡水和海水中高效电解水催化剂的设计提供了可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electronic modulation of amorphous/crystalline NiFe LDH by atomic Pt loading enabling industrial hydrogen production in alkaline water and seawater

Electronic modulation of amorphous/crystalline NiFe LDH by atomic Pt loading enabling industrial hydrogen production in alkaline water and seawater
The reasonable development and design of high-efficiency and low-cost electrocatalysts for hydrogen evolution reaction (HER) under industrial current densities are imperative for achieving carbon neutrality, while also posing challenges. In this study, an efficient electrocatalyst is successfully constructed through electrodeposition methods, which consists of monodispersed Pt loaded on amorphous/crystalline nickel–iron layered double hydroxide (Pt-SAs/ac-NiFe LDH). The Pt-SAs/ac-NiFe LDH demonstrates an elevated mass activity of 17.66 A mgPt−1 and a significant turnover frequency of 17.90 s−1 for HER in alkaline conditions under the overpotential of 100 mV. Meanwhile, for alkaline freshwater and seawater, Pt-SAs/ac-NiFe LDH exhibits ultra-low overpotentials of 141 and 138 mV to reach 1000 mA cm−2, respectively. Remarkably, it maintains stable operation for 100 h at 500 mA cm−2, showcasing its robustness and reliability. In situ Raman spectra reveal that Pt single atoms (Pt-SAs) accelerate interfacial water dissociation, thereby enhancing the HER kinetics in Pt-SAs/ac-NiFe LDH. Furthermore, theoretical calculation results show significant electronic interaction between the Pt-SAs and the ac-NiFe LDH support. The interaction significantly enhances water adsorption and dissociation, and balances the adsorption/desorption of hydrogen intermediates, ultimately improving HER performance. This research provides a viable method for designing efficient HER catalysts for water electrolysis in alkaline freshwater and seawater under industrial current densities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信