Claude Uwimana , Shengdi Zhou , Limei Yang , Zhuqing Li , Norbelt Mutagisha , Edouard Niyongabo , Bin Zhou
{"title":"基于混合表示的CAD模型分割","authors":"Claude Uwimana , Shengdi Zhou , Limei Yang , Zhuqing Li , Norbelt Mutagisha , Edouard Niyongabo , Bin Zhou","doi":"10.1016/j.vrih.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce an innovative method for computer-aided design (CAD) segmentation by concatenating meshes and CAD models. Many previous CAD segmentation methods have achieved impressive performance using single representations, such as meshes, CAD, and point clouds. However, existing methods cannot effectively combine different three-dimensional model types for the direct conversion, alignment, and integrity maintenance of geometric and topological information. Hence, we propose an integration approach that combines the geometric accuracy of CAD data with the flexibility of mesh representations, as well as introduce a unique hybrid representation that combines CAD and mesh models to enhance segmentation accuracy. To combine these two model types, our hybrid system utilizes advanced-neural-network techniques to convert CAD models into mesh models. For complex CAD models, model segmentation is crucial for model retrieval and reuse. In partial retrieval, it aims to segment a complex CAD model into several simple components. The first component of our hybrid system involves advanced mesh-labeling algorithms that harness the digitization of CAD properties to mesh models. The second component integrates labelled face features for CAD segmentation by leveraging the abundant multisemantic information embedded in CAD models. This combination of mesh and CAD not only refines the accuracy of boundary delineation but also provides a comprehensive understanding of the underlying object semantics. This study uses the Fusion 360 Gallery dataset. Experimental results indicate that our hybrid method can segment these models with higher accuracy than other methods that use single representations.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"7 2","pages":"Pages 188-202"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentation of CAD models using hybrid representation\",\"authors\":\"Claude Uwimana , Shengdi Zhou , Limei Yang , Zhuqing Li , Norbelt Mutagisha , Edouard Niyongabo , Bin Zhou\",\"doi\":\"10.1016/j.vrih.2025.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce an innovative method for computer-aided design (CAD) segmentation by concatenating meshes and CAD models. Many previous CAD segmentation methods have achieved impressive performance using single representations, such as meshes, CAD, and point clouds. However, existing methods cannot effectively combine different three-dimensional model types for the direct conversion, alignment, and integrity maintenance of geometric and topological information. Hence, we propose an integration approach that combines the geometric accuracy of CAD data with the flexibility of mesh representations, as well as introduce a unique hybrid representation that combines CAD and mesh models to enhance segmentation accuracy. To combine these two model types, our hybrid system utilizes advanced-neural-network techniques to convert CAD models into mesh models. For complex CAD models, model segmentation is crucial for model retrieval and reuse. In partial retrieval, it aims to segment a complex CAD model into several simple components. The first component of our hybrid system involves advanced mesh-labeling algorithms that harness the digitization of CAD properties to mesh models. The second component integrates labelled face features for CAD segmentation by leveraging the abundant multisemantic information embedded in CAD models. This combination of mesh and CAD not only refines the accuracy of boundary delineation but also provides a comprehensive understanding of the underlying object semantics. This study uses the Fusion 360 Gallery dataset. Experimental results indicate that our hybrid method can segment these models with higher accuracy than other methods that use single representations.</div></div>\",\"PeriodicalId\":33538,\"journal\":{\"name\":\"Virtual Reality Intelligent Hardware\",\"volume\":\"7 2\",\"pages\":\"Pages 188-202\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Reality Intelligent Hardware\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096579625000014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579625000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Segmentation of CAD models using hybrid representation
In this paper, we introduce an innovative method for computer-aided design (CAD) segmentation by concatenating meshes and CAD models. Many previous CAD segmentation methods have achieved impressive performance using single representations, such as meshes, CAD, and point clouds. However, existing methods cannot effectively combine different three-dimensional model types for the direct conversion, alignment, and integrity maintenance of geometric and topological information. Hence, we propose an integration approach that combines the geometric accuracy of CAD data with the flexibility of mesh representations, as well as introduce a unique hybrid representation that combines CAD and mesh models to enhance segmentation accuracy. To combine these two model types, our hybrid system utilizes advanced-neural-network techniques to convert CAD models into mesh models. For complex CAD models, model segmentation is crucial for model retrieval and reuse. In partial retrieval, it aims to segment a complex CAD model into several simple components. The first component of our hybrid system involves advanced mesh-labeling algorithms that harness the digitization of CAD properties to mesh models. The second component integrates labelled face features for CAD segmentation by leveraging the abundant multisemantic information embedded in CAD models. This combination of mesh and CAD not only refines the accuracy of boundary delineation but also provides a comprehensive understanding of the underlying object semantics. This study uses the Fusion 360 Gallery dataset. Experimental results indicate that our hybrid method can segment these models with higher accuracy than other methods that use single representations.