Amir Azizi , Panayiotis Charalambous , Yiorgos Chrysanthou
{"title":"DeepSafe:用于灾难受害者检测的两级深度学习方法","authors":"Amir Azizi , Panayiotis Charalambous , Yiorgos Chrysanthou","doi":"10.1016/j.vrih.2024.08.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Efficient disaster victim detection (DVD) in urban areas after natural disasters is crucial for minimizing losses. However, conventional search and rescue (SAR) methods often experience delays, which can hinder the timely detection of victims. SAR teams face various challenges, including limited access to debris and collapsed structures, safety risks due to unstable conditions, and disrupted communication networks.</div></div><div><h3>Methods</h3><div>In this paper, we present DeepSafe, a novel two-level deep learning approach for multilevel classification and object detection using a simulated disaster victim dataset. DeepSafe first employs YOLOv8 to classify images into victim and non-victim categories. Subsequently, Detectron2 is used to precisely locate and outline the victims.</div></div><div><h3>Results</h3><div>Experimental results demonstrate the promising performance of DeepSafe in both victim classification and detection. The model effectively identified and located victims under the challenging conditions presented in the dataset.</div></div><div><h3>Conclusion</h3><div>DeepSafe offers a practical tool for real-time disaster management and SAR operations, significantly improving conventional methods by reducing delays and enhancing victim detection accuracy in disaster-stricken urban areas.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"7 2","pages":"Pages 139-154"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepSafe:Two-level deep learning approach for disaster victims detection\",\"authors\":\"Amir Azizi , Panayiotis Charalambous , Yiorgos Chrysanthou\",\"doi\":\"10.1016/j.vrih.2024.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Efficient disaster victim detection (DVD) in urban areas after natural disasters is crucial for minimizing losses. However, conventional search and rescue (SAR) methods often experience delays, which can hinder the timely detection of victims. SAR teams face various challenges, including limited access to debris and collapsed structures, safety risks due to unstable conditions, and disrupted communication networks.</div></div><div><h3>Methods</h3><div>In this paper, we present DeepSafe, a novel two-level deep learning approach for multilevel classification and object detection using a simulated disaster victim dataset. DeepSafe first employs YOLOv8 to classify images into victim and non-victim categories. Subsequently, Detectron2 is used to precisely locate and outline the victims.</div></div><div><h3>Results</h3><div>Experimental results demonstrate the promising performance of DeepSafe in both victim classification and detection. The model effectively identified and located victims under the challenging conditions presented in the dataset.</div></div><div><h3>Conclusion</h3><div>DeepSafe offers a practical tool for real-time disaster management and SAR operations, significantly improving conventional methods by reducing delays and enhancing victim detection accuracy in disaster-stricken urban areas.</div></div>\",\"PeriodicalId\":33538,\"journal\":{\"name\":\"Virtual Reality Intelligent Hardware\",\"volume\":\"7 2\",\"pages\":\"Pages 139-154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Reality Intelligent Hardware\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096579624000524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579624000524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
DeepSafe:Two-level deep learning approach for disaster victims detection
Background
Efficient disaster victim detection (DVD) in urban areas after natural disasters is crucial for minimizing losses. However, conventional search and rescue (SAR) methods often experience delays, which can hinder the timely detection of victims. SAR teams face various challenges, including limited access to debris and collapsed structures, safety risks due to unstable conditions, and disrupted communication networks.
Methods
In this paper, we present DeepSafe, a novel two-level deep learning approach for multilevel classification and object detection using a simulated disaster victim dataset. DeepSafe first employs YOLOv8 to classify images into victim and non-victim categories. Subsequently, Detectron2 is used to precisely locate and outline the victims.
Results
Experimental results demonstrate the promising performance of DeepSafe in both victim classification and detection. The model effectively identified and located victims under the challenging conditions presented in the dataset.
Conclusion
DeepSafe offers a practical tool for real-time disaster management and SAR operations, significantly improving conventional methods by reducing delays and enhancing victim detection accuracy in disaster-stricken urban areas.