{"title":"无人机和物联网的高级安全框架:一种深度学习方法","authors":"Nordine Quadar , Abdellah Chehri , Benoit Debaque","doi":"10.1016/j.iot.2025.101594","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of unmanned aerial vehicles (UAVs) has opened new avenues for enhanced security and functionality. The security of UAVs through the detection and analysis of unique signal patterns is a critical aspect of this technological advancement. This approach leverages intrinsic signal characteristics to distinguish between UAVs of identical models, providing a robust layer of security at the communication level. The application of artificial intelligence in UAV signal analysis has shown significant potential in improving UAV identification and authentication. Recent advancements utilize deep learning techniques with raw In-phase and Quadrature (I/Q) data to achieve high-precision UAV signal recognition. However, existing deep learning models face challenges with unfamiliar data scenarios involving I/Q data. This work explores alternative transformations of I/Q data and investigates the integration of statistical features such as mean, median, and mode across these transformations. It also evaluates the generalization capability of the proposed methods in various environments and examines the impact of signal-to-noise ratio (SNR) on recognition accuracy. Experimental results underscore the promise of our approach, establishing a solid foundation for practical deep-learning-based UAV security solutions and contributing to the field of IoT.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"32 ","pages":"Article 101594"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced security frameworks for UAV and IoT: A deep learning approach\",\"authors\":\"Nordine Quadar , Abdellah Chehri , Benoit Debaque\",\"doi\":\"10.1016/j.iot.2025.101594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of unmanned aerial vehicles (UAVs) has opened new avenues for enhanced security and functionality. The security of UAVs through the detection and analysis of unique signal patterns is a critical aspect of this technological advancement. This approach leverages intrinsic signal characteristics to distinguish between UAVs of identical models, providing a robust layer of security at the communication level. The application of artificial intelligence in UAV signal analysis has shown significant potential in improving UAV identification and authentication. Recent advancements utilize deep learning techniques with raw In-phase and Quadrature (I/Q) data to achieve high-precision UAV signal recognition. However, existing deep learning models face challenges with unfamiliar data scenarios involving I/Q data. This work explores alternative transformations of I/Q data and investigates the integration of statistical features such as mean, median, and mode across these transformations. It also evaluates the generalization capability of the proposed methods in various environments and examines the impact of signal-to-noise ratio (SNR) on recognition accuracy. Experimental results underscore the promise of our approach, establishing a solid foundation for practical deep-learning-based UAV security solutions and contributing to the field of IoT.</div></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"32 \",\"pages\":\"Article 101594\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660525001076\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525001076","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Advanced security frameworks for UAV and IoT: A deep learning approach
The integration of unmanned aerial vehicles (UAVs) has opened new avenues for enhanced security and functionality. The security of UAVs through the detection and analysis of unique signal patterns is a critical aspect of this technological advancement. This approach leverages intrinsic signal characteristics to distinguish between UAVs of identical models, providing a robust layer of security at the communication level. The application of artificial intelligence in UAV signal analysis has shown significant potential in improving UAV identification and authentication. Recent advancements utilize deep learning techniques with raw In-phase and Quadrature (I/Q) data to achieve high-precision UAV signal recognition. However, existing deep learning models face challenges with unfamiliar data scenarios involving I/Q data. This work explores alternative transformations of I/Q data and investigates the integration of statistical features such as mean, median, and mode across these transformations. It also evaluates the generalization capability of the proposed methods in various environments and examines the impact of signal-to-noise ratio (SNR) on recognition accuracy. Experimental results underscore the promise of our approach, establishing a solid foundation for practical deep-learning-based UAV security solutions and contributing to the field of IoT.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.