Anjineya K , Don Mathew , Meghna C.H , Vincent Mathew
{"title":"一维光子晶体中基于拓扑光子保护边缘态的折射率传感器分析","authors":"Anjineya K , Don Mathew , Meghna C.H , Vincent Mathew","doi":"10.1016/j.photonics.2025.101388","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes a refractive index sensor designed with a 1D (One-dimensional) topological photonic crystal by merging two 1D photonic crystals, which differ topologically, and introducing a defect layer at the interface of these two photonic crystals. It is designed by finding and analyzing the Zak phase of the photonic crystals, and the results ensure increased sensitivity and quality factor, with the highest figure of merit of 29383.759(<em>RIU</em><sup>−1</sup>). The topologically protected edge state is used for sensing, which guarantees well-defined peaks with sufficient shifts in wavelength even for a minuscule change in analyte refractive index. The change in sensitivity, quality factor, and figure of merit is studied, and the response to the change in the refractive index is impressive.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"65 ","pages":"Article 101388"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of refractive index sensor using topological photonic protected edge state in one-dimensional photonic crystal\",\"authors\":\"Anjineya K , Don Mathew , Meghna C.H , Vincent Mathew\",\"doi\":\"10.1016/j.photonics.2025.101388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work proposes a refractive index sensor designed with a 1D (One-dimensional) topological photonic crystal by merging two 1D photonic crystals, which differ topologically, and introducing a defect layer at the interface of these two photonic crystals. It is designed by finding and analyzing the Zak phase of the photonic crystals, and the results ensure increased sensitivity and quality factor, with the highest figure of merit of 29383.759(<em>RIU</em><sup>−1</sup>). The topologically protected edge state is used for sensing, which guarantees well-defined peaks with sufficient shifts in wavelength even for a minuscule change in analyte refractive index. The change in sensitivity, quality factor, and figure of merit is studied, and the response to the change in the refractive index is impressive.</div></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":\"65 \",\"pages\":\"Article 101388\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569441025000380\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000380","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of refractive index sensor using topological photonic protected edge state in one-dimensional photonic crystal
This work proposes a refractive index sensor designed with a 1D (One-dimensional) topological photonic crystal by merging two 1D photonic crystals, which differ topologically, and introducing a defect layer at the interface of these two photonic crystals. It is designed by finding and analyzing the Zak phase of the photonic crystals, and the results ensure increased sensitivity and quality factor, with the highest figure of merit of 29383.759(RIU−1). The topologically protected edge state is used for sensing, which guarantees well-defined peaks with sufficient shifts in wavelength even for a minuscule change in analyte refractive index. The change in sensitivity, quality factor, and figure of merit is studied, and the response to the change in the refractive index is impressive.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.