一维光子晶体中基于拓扑光子保护边缘态的折射率传感器分析

IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Anjineya K , Don Mathew , Meghna C.H , Vincent Mathew
{"title":"一维光子晶体中基于拓扑光子保护边缘态的折射率传感器分析","authors":"Anjineya K ,&nbsp;Don Mathew ,&nbsp;Meghna C.H ,&nbsp;Vincent Mathew","doi":"10.1016/j.photonics.2025.101388","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes a refractive index sensor designed with a 1D (One-dimensional) topological photonic crystal by merging two 1D photonic crystals, which differ topologically, and introducing a defect layer at the interface of these two photonic crystals. It is designed by finding and analyzing the Zak phase of the photonic crystals, and the results ensure increased sensitivity and quality factor, with the highest figure of merit of 29383.759(<em>RIU</em><sup>−1</sup>). The topologically protected edge state is used for sensing, which guarantees well-defined peaks with sufficient shifts in wavelength even for a minuscule change in analyte refractive index. The change in sensitivity, quality factor, and figure of merit is studied, and the response to the change in the refractive index is impressive.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"65 ","pages":"Article 101388"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of refractive index sensor using topological photonic protected edge state in one-dimensional photonic crystal\",\"authors\":\"Anjineya K ,&nbsp;Don Mathew ,&nbsp;Meghna C.H ,&nbsp;Vincent Mathew\",\"doi\":\"10.1016/j.photonics.2025.101388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work proposes a refractive index sensor designed with a 1D (One-dimensional) topological photonic crystal by merging two 1D photonic crystals, which differ topologically, and introducing a defect layer at the interface of these two photonic crystals. It is designed by finding and analyzing the Zak phase of the photonic crystals, and the results ensure increased sensitivity and quality factor, with the highest figure of merit of 29383.759(<em>RIU</em><sup>−1</sup>). The topologically protected edge state is used for sensing, which guarantees well-defined peaks with sufficient shifts in wavelength even for a minuscule change in analyte refractive index. The change in sensitivity, quality factor, and figure of merit is studied, and the response to the change in the refractive index is impressive.</div></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":\"65 \",\"pages\":\"Article 101388\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569441025000380\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000380","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用一维拓扑光子晶体设计折射率传感器的方法,该方法将两个拓扑结构不同的一维光子晶体合并,并在这两个光子晶体的界面处引入缺陷层。它是通过寻找和分析光子晶体的Zak相位来设计的,结果保证了更高的灵敏度和质量因子,最高的优值为29383.759(RIU−1)。拓扑保护的边缘状态用于传感,这保证了良好定义的峰值,在波长上有足够的位移,即使在分析物折射率的微小变化。研究了灵敏度、品质因数和优值的变化,对折射率变化的响应令人印象深刻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of refractive index sensor using topological photonic protected edge state in one-dimensional photonic crystal
This work proposes a refractive index sensor designed with a 1D (One-dimensional) topological photonic crystal by merging two 1D photonic crystals, which differ topologically, and introducing a defect layer at the interface of these two photonic crystals. It is designed by finding and analyzing the Zak phase of the photonic crystals, and the results ensure increased sensitivity and quality factor, with the highest figure of merit of 29383.759(RIU−1). The topologically protected edge state is used for sensing, which guarantees well-defined peaks with sufficient shifts in wavelength even for a minuscule change in analyte refractive index. The change in sensitivity, quality factor, and figure of merit is studied, and the response to the change in the refractive index is impressive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信