Amir Alfonso Rodriguez Santana, Mohammad Danaeifar
{"title":"连续介质中准束缚态控制的WS2超表面偏振灵敏度工程","authors":"Amir Alfonso Rodriguez Santana, Mohammad Danaeifar","doi":"10.1016/j.photonics.2025.101387","DOIUrl":null,"url":null,"abstract":"<div><div>Bound states in the continuum (BICs) hold significant potential for enhancing light-matter interactions with high quality (Q) factor resonances. Concurrently, tungsten disulfide (WS<sub>2</sub>), a transition metal dichalcogenide (TMDC), provides a pathway to attain the strong-coupling regime, garnering significant interest from researchers. In this study, we engineer polarization sensitivity in metasurfaces constructed from bulk WS<sub>2</sub> slabs, employing two distinct approaches. Firstly, we synthesize a polarization-sensitive metasurface composed of dual slabs with varying dimensions to achieve symmetry-protected BICs. The rotation of the electric field direction of the incident wave leads to a dramatic change in the transmittance response. Conversely, by considering a quad-slab unit cell, we develop a polarization-independent metasurface that exhibits a unique response to any orientation of the electric field of the incident wave. For both types of metasurfaces, we demonstrate the generation and tuning of quasi-BIC resonances by adjusting the degree of asymmetry. Furthermore, we elucidate how to achieve the strong coupling regime characterized by an anticrossing pattern through scaling the in-plane dimensions of the unit cell. In the strong coupling regime, Rabi splitting exhibits two distinct values of 104.2 meV and 116.8 meV for polarization-sensitive and polarization-independent metasurfaces, respectively. The polarization sensitivity engineering presented herein can be applied across various photonic systems, enabling the development of devices that are either highly sensitive or polarization-independent.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"65 ","pages":"Article 101387"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarization sensitivity engineering in WS2 metasurfaces governed by quasi-bound states in the continuum\",\"authors\":\"Amir Alfonso Rodriguez Santana, Mohammad Danaeifar\",\"doi\":\"10.1016/j.photonics.2025.101387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bound states in the continuum (BICs) hold significant potential for enhancing light-matter interactions with high quality (Q) factor resonances. Concurrently, tungsten disulfide (WS<sub>2</sub>), a transition metal dichalcogenide (TMDC), provides a pathway to attain the strong-coupling regime, garnering significant interest from researchers. In this study, we engineer polarization sensitivity in metasurfaces constructed from bulk WS<sub>2</sub> slabs, employing two distinct approaches. Firstly, we synthesize a polarization-sensitive metasurface composed of dual slabs with varying dimensions to achieve symmetry-protected BICs. The rotation of the electric field direction of the incident wave leads to a dramatic change in the transmittance response. Conversely, by considering a quad-slab unit cell, we develop a polarization-independent metasurface that exhibits a unique response to any orientation of the electric field of the incident wave. For both types of metasurfaces, we demonstrate the generation and tuning of quasi-BIC resonances by adjusting the degree of asymmetry. Furthermore, we elucidate how to achieve the strong coupling regime characterized by an anticrossing pattern through scaling the in-plane dimensions of the unit cell. In the strong coupling regime, Rabi splitting exhibits two distinct values of 104.2 meV and 116.8 meV for polarization-sensitive and polarization-independent metasurfaces, respectively. The polarization sensitivity engineering presented herein can be applied across various photonic systems, enabling the development of devices that are either highly sensitive or polarization-independent.</div></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":\"65 \",\"pages\":\"Article 101387\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569441025000379\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000379","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Polarization sensitivity engineering in WS2 metasurfaces governed by quasi-bound states in the continuum
Bound states in the continuum (BICs) hold significant potential for enhancing light-matter interactions with high quality (Q) factor resonances. Concurrently, tungsten disulfide (WS2), a transition metal dichalcogenide (TMDC), provides a pathway to attain the strong-coupling regime, garnering significant interest from researchers. In this study, we engineer polarization sensitivity in metasurfaces constructed from bulk WS2 slabs, employing two distinct approaches. Firstly, we synthesize a polarization-sensitive metasurface composed of dual slabs with varying dimensions to achieve symmetry-protected BICs. The rotation of the electric field direction of the incident wave leads to a dramatic change in the transmittance response. Conversely, by considering a quad-slab unit cell, we develop a polarization-independent metasurface that exhibits a unique response to any orientation of the electric field of the incident wave. For both types of metasurfaces, we demonstrate the generation and tuning of quasi-BIC resonances by adjusting the degree of asymmetry. Furthermore, we elucidate how to achieve the strong coupling regime characterized by an anticrossing pattern through scaling the in-plane dimensions of the unit cell. In the strong coupling regime, Rabi splitting exhibits two distinct values of 104.2 meV and 116.8 meV for polarization-sensitive and polarization-independent metasurfaces, respectively. The polarization sensitivity engineering presented herein can be applied across various photonic systems, enabling the development of devices that are either highly sensitive or polarization-independent.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.