{"title":"在碰撞模型中通过bath的相干性操纵非马尔可夫性","authors":"Xiao-Ming Li, Zhong-Xiao Man, Yun-Jie Xia","doi":"10.1016/j.cjph.2025.04.018","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a structured collision model where the system qubit directly interacts with a nonthermal bath simulated by an ensemble of ancillas, and each ancilla consists of <em>N</em> correlated qubits. Based on this collision model, we systematically investigate the effects of three distinct types of coherence, namely displacement coherence in the single-qubit bath, along with squeezing and heat-exchange coherences in the two-qubit bath, on non-Markovianity in open quantum dynamics. The research findings demonstrate that injecting any of these three types of coherence into the environment can enhance the non-Markovianity in dynamics and make it more easily activated as long as the parameters (including the magnitude and phase of coherence) are appropriately selected. When the intracollision strength is relatively small, manipulating the coherence embedded in the bath can induce successive transitions of the system's dynamics between Markovian and non-Markovian regimes. In particular, we show that compared to the displacement coherence in the single-qubit bath, injecting the heat-exchange coherence or squeezing coherence into the two-qubit bath is more effective for improving the non-Markovianity.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"95 ","pages":"Pages 877-889"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manipulating non-Markovianity via bath's coherence in a collision model\",\"authors\":\"Xiao-Ming Li, Zhong-Xiao Man, Yun-Jie Xia\",\"doi\":\"10.1016/j.cjph.2025.04.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a structured collision model where the system qubit directly interacts with a nonthermal bath simulated by an ensemble of ancillas, and each ancilla consists of <em>N</em> correlated qubits. Based on this collision model, we systematically investigate the effects of three distinct types of coherence, namely displacement coherence in the single-qubit bath, along with squeezing and heat-exchange coherences in the two-qubit bath, on non-Markovianity in open quantum dynamics. The research findings demonstrate that injecting any of these three types of coherence into the environment can enhance the non-Markovianity in dynamics and make it more easily activated as long as the parameters (including the magnitude and phase of coherence) are appropriately selected. When the intracollision strength is relatively small, manipulating the coherence embedded in the bath can induce successive transitions of the system's dynamics between Markovian and non-Markovian regimes. In particular, we show that compared to the displacement coherence in the single-qubit bath, injecting the heat-exchange coherence or squeezing coherence into the two-qubit bath is more effective for improving the non-Markovianity.</div></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":\"95 \",\"pages\":\"Pages 877-889\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907325001613\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325001613","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Manipulating non-Markovianity via bath's coherence in a collision model
In this paper, we propose a structured collision model where the system qubit directly interacts with a nonthermal bath simulated by an ensemble of ancillas, and each ancilla consists of N correlated qubits. Based on this collision model, we systematically investigate the effects of three distinct types of coherence, namely displacement coherence in the single-qubit bath, along with squeezing and heat-exchange coherences in the two-qubit bath, on non-Markovianity in open quantum dynamics. The research findings demonstrate that injecting any of these three types of coherence into the environment can enhance the non-Markovianity in dynamics and make it more easily activated as long as the parameters (including the magnitude and phase of coherence) are appropriately selected. When the intracollision strength is relatively small, manipulating the coherence embedded in the bath can induce successive transitions of the system's dynamics between Markovian and non-Markovian regimes. In particular, we show that compared to the displacement coherence in the single-qubit bath, injecting the heat-exchange coherence or squeezing coherence into the two-qubit bath is more effective for improving the non-Markovianity.
期刊介绍:
The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics.
The editors welcome manuscripts on:
-General Physics: Statistical and Quantum Mechanics, etc.-
Gravitation and Astrophysics-
Elementary Particles and Fields-
Nuclear Physics-
Atomic, Molecular, and Optical Physics-
Quantum Information and Quantum Computation-
Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks-
Plasma and Beam Physics-
Condensed Matter: Structure, etc.-
Condensed Matter: Electronic Properties, etc.-
Polymer, Soft Matter, Biological, and Interdisciplinary Physics.
CJP publishes regular research papers, feature articles and review papers.