Haodong Wu , Bo Yu , Chengsheng Ni , Xiangling Yue , John T.S. Irvine
{"title":"通过过渡金属掺杂和外溶提高Zr0.1Ce0.9O2-δ的催化性能","authors":"Haodong Wu , Bo Yu , Chengsheng Ni , Xiangling Yue , John T.S. Irvine","doi":"10.1016/j.ssi.2025.116868","DOIUrl":null,"url":null,"abstract":"<div><div>As a cost-effective alternative to noble material, Zr<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>2-δ</sub> (ZDC) plays a crucial role in industrial catalysis, including applications such as automotive exhaust treatment, solid oxide fuel cells, and the catalytic combustion of hydrocarbons, due to its excellent oxygen storage capacity, high thermal stability, and resistance to carbon deposition. An important new approach for optimizing the performance of Zr<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>2-<em>δ</em></sub> as a catalyst is the <em>in-situ</em> exsolution of metal nanoparticles. Exsolution is recognized as a promising strategy for generating highly dispersed nanoparticles on the catalyst support, enhancing catalytic activity and stability. Herein, transition metal cations (Fe, Co, Ni and Cu ions) are doped into the ZDC fluorite-structured oxides (ZDC<em>M</em>) and exsolved on its surface under reduction conditions (ZDC<em>M</em>-R, <em>M</em> = Fe, Co, Ni and Cu). X-ray photoelectron spectroscopy and Raman spectroscopy confirm that the exsolution of Co and Cu generated an oxygen-vacancy-rich layer on the support surface, which significantly enhanced their catalytic performance<strong>.</strong> As a result, both ZDCCu-R and ZDCCo-R catalysts were able to achieve complete CO oxidation at temperatures below 200 °C. Moreover, ZDCCo-based anodes have shown a maximum power density of 348.2 mW at 800 °C and demonstrated exceptional stability during direct methane utilization in solid oxide fuel cells.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"425 ","pages":"Article 116868"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of catalytic performance in Zr0.1Ce0.9O2-δ through transition metal doping and exsolution\",\"authors\":\"Haodong Wu , Bo Yu , Chengsheng Ni , Xiangling Yue , John T.S. Irvine\",\"doi\":\"10.1016/j.ssi.2025.116868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a cost-effective alternative to noble material, Zr<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>2-δ</sub> (ZDC) plays a crucial role in industrial catalysis, including applications such as automotive exhaust treatment, solid oxide fuel cells, and the catalytic combustion of hydrocarbons, due to its excellent oxygen storage capacity, high thermal stability, and resistance to carbon deposition. An important new approach for optimizing the performance of Zr<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>2-<em>δ</em></sub> as a catalyst is the <em>in-situ</em> exsolution of metal nanoparticles. Exsolution is recognized as a promising strategy for generating highly dispersed nanoparticles on the catalyst support, enhancing catalytic activity and stability. Herein, transition metal cations (Fe, Co, Ni and Cu ions) are doped into the ZDC fluorite-structured oxides (ZDC<em>M</em>) and exsolved on its surface under reduction conditions (ZDC<em>M</em>-R, <em>M</em> = Fe, Co, Ni and Cu). X-ray photoelectron spectroscopy and Raman spectroscopy confirm that the exsolution of Co and Cu generated an oxygen-vacancy-rich layer on the support surface, which significantly enhanced their catalytic performance<strong>.</strong> As a result, both ZDCCu-R and ZDCCo-R catalysts were able to achieve complete CO oxidation at temperatures below 200 °C. Moreover, ZDCCo-based anodes have shown a maximum power density of 348.2 mW at 800 °C and demonstrated exceptional stability during direct methane utilization in solid oxide fuel cells.</div></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"425 \",\"pages\":\"Article 116868\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273825000876\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000876","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Enhancement of catalytic performance in Zr0.1Ce0.9O2-δ through transition metal doping and exsolution
As a cost-effective alternative to noble material, Zr0.1Ce0.9O2-δ (ZDC) plays a crucial role in industrial catalysis, including applications such as automotive exhaust treatment, solid oxide fuel cells, and the catalytic combustion of hydrocarbons, due to its excellent oxygen storage capacity, high thermal stability, and resistance to carbon deposition. An important new approach for optimizing the performance of Zr0.1Ce0.9O2-δ as a catalyst is the in-situ exsolution of metal nanoparticles. Exsolution is recognized as a promising strategy for generating highly dispersed nanoparticles on the catalyst support, enhancing catalytic activity and stability. Herein, transition metal cations (Fe, Co, Ni and Cu ions) are doped into the ZDC fluorite-structured oxides (ZDCM) and exsolved on its surface under reduction conditions (ZDCM-R, M = Fe, Co, Ni and Cu). X-ray photoelectron spectroscopy and Raman spectroscopy confirm that the exsolution of Co and Cu generated an oxygen-vacancy-rich layer on the support surface, which significantly enhanced their catalytic performance. As a result, both ZDCCu-R and ZDCCo-R catalysts were able to achieve complete CO oxidation at temperatures below 200 °C. Moreover, ZDCCo-based anodes have shown a maximum power density of 348.2 mW at 800 °C and demonstrated exceptional stability during direct methane utilization in solid oxide fuel cells.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.