Aref Ghorbani , Sophia Jennie Giancoli , Seyed Ali Ghoreishy , Martijn W.J. Noort , Mehdi Habibi
{"title":"一种新型3D食品打印技术:通过液体绳索缠绕实现可调孔隙度和断裂性能","authors":"Aref Ghorbani , Sophia Jennie Giancoli , Seyed Ali Ghoreishy , Martijn W.J. Noort , Mehdi Habibi","doi":"10.1016/j.ifset.2025.104022","DOIUrl":null,"url":null,"abstract":"<div><div>We present a 3D food printing (3DFP) method to create coiled structures, harnessing the liquid rope coiling effect as a rapid method of food printing with tunable fractural properties. By studying the printability and coil-forming ability of pea, carrot, and cookie dough inks, we identified optimal printing parameters to induce steady and controlled coiling, enabling the creation of coiled structures with tunable porosities using a single nozzle. Fracture profiles from post-processed coiled structures showed complex responses but presented direct correlations between the porosity and textural parameters, including hardness, brittleness, and initial stiffness. This study provides a foundation for the fabrication of coiled food structures using 3DFP and highlights its potential application in designing textural properties and a range of unique sensory experiences.</div></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"102 ","pages":"Article 104022"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel 3D food printing technique: Achieving tunable porosity and fracture properties via liquid rope coiling\",\"authors\":\"Aref Ghorbani , Sophia Jennie Giancoli , Seyed Ali Ghoreishy , Martijn W.J. Noort , Mehdi Habibi\",\"doi\":\"10.1016/j.ifset.2025.104022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a 3D food printing (3DFP) method to create coiled structures, harnessing the liquid rope coiling effect as a rapid method of food printing with tunable fractural properties. By studying the printability and coil-forming ability of pea, carrot, and cookie dough inks, we identified optimal printing parameters to induce steady and controlled coiling, enabling the creation of coiled structures with tunable porosities using a single nozzle. Fracture profiles from post-processed coiled structures showed complex responses but presented direct correlations between the porosity and textural parameters, including hardness, brittleness, and initial stiffness. This study provides a foundation for the fabrication of coiled food structures using 3DFP and highlights its potential application in designing textural properties and a range of unique sensory experiences.</div></div>\",\"PeriodicalId\":329,\"journal\":{\"name\":\"Innovative Food Science & Emerging Technologies\",\"volume\":\"102 \",\"pages\":\"Article 104022\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovative Food Science & Emerging Technologies\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1466856425001067\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856425001067","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
A novel 3D food printing technique: Achieving tunable porosity and fracture properties via liquid rope coiling
We present a 3D food printing (3DFP) method to create coiled structures, harnessing the liquid rope coiling effect as a rapid method of food printing with tunable fractural properties. By studying the printability and coil-forming ability of pea, carrot, and cookie dough inks, we identified optimal printing parameters to induce steady and controlled coiling, enabling the creation of coiled structures with tunable porosities using a single nozzle. Fracture profiles from post-processed coiled structures showed complex responses but presented direct correlations between the porosity and textural parameters, including hardness, brittleness, and initial stiffness. This study provides a foundation for the fabrication of coiled food structures using 3DFP and highlights its potential application in designing textural properties and a range of unique sensory experiences.
期刊介绍:
Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.