{"title":"克服电极表面和体积之间的二分法:导电聚合物","authors":"Viktor Gueskine , Penghui Ding , Reverant Crispin , Mikhail Vagin","doi":"10.1016/j.coelec.2025.101691","DOIUrl":null,"url":null,"abstract":"<div><div>The surface of the solid-state electrodes constructed from atomic crystals is inherently uncertain due to its chemical unsaturation as its atoms lack the surrounding by the atoms of the same type as in the bulk and its exposure to a different phase. This complicates the evaluation of properties for the high surface area electrodes achieved by porosity. Conducting polymers (CP) are intrinsically conductive molecular solids built from polymeric conjugated molecules without covalent bounds between them. The molecular character of CP implies the translation of identical state from the bulk to the surface of the film without additional surface-induced defects. The absence of covalent bonds between backbones enables the access of external electrolyte to individual chain of CP forming the electrical double layer at the molecular scale. Here we discuss the combination of molecular porosity of CP with its inherent selectivity of ion transport as a special case of porous electrode. We also discuss how the Gibbs phase rule can help in understanding CP electrochemistry.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"51 ","pages":"Article 101691"},"PeriodicalIF":7.9000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcoming dichotomy between surface and bulk of electrode: Conducting polymers\",\"authors\":\"Viktor Gueskine , Penghui Ding , Reverant Crispin , Mikhail Vagin\",\"doi\":\"10.1016/j.coelec.2025.101691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The surface of the solid-state electrodes constructed from atomic crystals is inherently uncertain due to its chemical unsaturation as its atoms lack the surrounding by the atoms of the same type as in the bulk and its exposure to a different phase. This complicates the evaluation of properties for the high surface area electrodes achieved by porosity. Conducting polymers (CP) are intrinsically conductive molecular solids built from polymeric conjugated molecules without covalent bounds between them. The molecular character of CP implies the translation of identical state from the bulk to the surface of the film without additional surface-induced defects. The absence of covalent bonds between backbones enables the access of external electrolyte to individual chain of CP forming the electrical double layer at the molecular scale. Here we discuss the combination of molecular porosity of CP with its inherent selectivity of ion transport as a special case of porous electrode. We also discuss how the Gibbs phase rule can help in understanding CP electrochemistry.</div></div>\",\"PeriodicalId\":11028,\"journal\":{\"name\":\"Current Opinion in Electrochemistry\",\"volume\":\"51 \",\"pages\":\"Article 101691\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Electrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245191032500050X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245191032500050X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Overcoming dichotomy between surface and bulk of electrode: Conducting polymers
The surface of the solid-state electrodes constructed from atomic crystals is inherently uncertain due to its chemical unsaturation as its atoms lack the surrounding by the atoms of the same type as in the bulk and its exposure to a different phase. This complicates the evaluation of properties for the high surface area electrodes achieved by porosity. Conducting polymers (CP) are intrinsically conductive molecular solids built from polymeric conjugated molecules without covalent bounds between them. The molecular character of CP implies the translation of identical state from the bulk to the surface of the film without additional surface-induced defects. The absence of covalent bonds between backbones enables the access of external electrolyte to individual chain of CP forming the electrical double layer at the molecular scale. Here we discuss the combination of molecular porosity of CP with its inherent selectivity of ion transport as a special case of porous electrode. We also discuss how the Gibbs phase rule can help in understanding CP electrochemistry.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •