空间加速度计的共振频率测量

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Didier Chérubin Negretto , Jan ten Pierick , Luigi Ferraioli , Daniel Bieri , Pierrick Cheiney , Olivier Jolly , Domenico Giardini
{"title":"空间加速度计的共振频率测量","authors":"Didier Chérubin Negretto ,&nbsp;Jan ten Pierick ,&nbsp;Luigi Ferraioli ,&nbsp;Daniel Bieri ,&nbsp;Pierrick Cheiney ,&nbsp;Olivier Jolly ,&nbsp;Domenico Giardini","doi":"10.1016/j.sna.2025.116587","DOIUrl":null,"url":null,"abstract":"<div><div>Resonance frequency measurements are used for various applications: atomic force microscopes, mass detection, biochemical and inertial sensors. In this article a detailed analysis of the performances of a resonance frequency measurement method are presented and demonstrated using a space grade accelerometer. The method consists of replacing the feedback of the oscillator with a controller that drives the sensor’s input, acquires the sensor’s output, determines the phase shift between the sensor’s input and output, converts it to a resonance frequency measurement and adjusts the drive signal’s frequency. The innovative phase to frequency conversion model used ensures a fast convergence of the drive signal towards the resonance frequency. The maximum measured relative error while searching for the resonance frequency is of 0.04 [%]. The tracking of the resonance frequency shows no oscillations or overshoots because the resonance frequency is exactly measured. The achieved measurement noise floor for the specific sensor used is <span><math><mrow><mn>0</mn><mo>.</mo><mn>13</mn></mrow></math></span> [<span><math><mrow><mi>m</mi><mi>H</mi><mi>z</mi><mo>/</mo><msqrt><mi>H</mi><mi>z</mi></msqrt></mrow></math></span>] at <span><math><mrow><mn>1</mn><mspace></mspace><mfenced><mrow><mi>H</mi><mi>z</mi></mrow></mfenced></mrow></math></span>. The measurement method presented can be exploited for other applications which also rely on the measurement of the resonance frequency of a piezo-electric resonator.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"390 ","pages":"Article 116587"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resonance frequency measurement for space accelerometer\",\"authors\":\"Didier Chérubin Negretto ,&nbsp;Jan ten Pierick ,&nbsp;Luigi Ferraioli ,&nbsp;Daniel Bieri ,&nbsp;Pierrick Cheiney ,&nbsp;Olivier Jolly ,&nbsp;Domenico Giardini\",\"doi\":\"10.1016/j.sna.2025.116587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Resonance frequency measurements are used for various applications: atomic force microscopes, mass detection, biochemical and inertial sensors. In this article a detailed analysis of the performances of a resonance frequency measurement method are presented and demonstrated using a space grade accelerometer. The method consists of replacing the feedback of the oscillator with a controller that drives the sensor’s input, acquires the sensor’s output, determines the phase shift between the sensor’s input and output, converts it to a resonance frequency measurement and adjusts the drive signal’s frequency. The innovative phase to frequency conversion model used ensures a fast convergence of the drive signal towards the resonance frequency. The maximum measured relative error while searching for the resonance frequency is of 0.04 [%]. The tracking of the resonance frequency shows no oscillations or overshoots because the resonance frequency is exactly measured. The achieved measurement noise floor for the specific sensor used is <span><math><mrow><mn>0</mn><mo>.</mo><mn>13</mn></mrow></math></span> [<span><math><mrow><mi>m</mi><mi>H</mi><mi>z</mi><mo>/</mo><msqrt><mi>H</mi><mi>z</mi></msqrt></mrow></math></span>] at <span><math><mrow><mn>1</mn><mspace></mspace><mfenced><mrow><mi>H</mi><mi>z</mi></mrow></mfenced></mrow></math></span>. The measurement method presented can be exploited for other applications which also rely on the measurement of the resonance frequency of a piezo-electric resonator.</div></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":\"390 \",\"pages\":\"Article 116587\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424725003930\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424725003930","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

共振频率测量用于各种应用:原子力显微镜,质量检测,生化和惯性传感器。本文详细分析了谐振频率测量方法的性能,并以空间级加速度计为例进行了验证。该方法包括用控制器取代振荡器的反馈,控制器驱动传感器的输入,获取传感器的输出,确定传感器输入和输出之间的相移,将其转换为谐振频率测量并调整驱动信号的频率。采用创新的相位到频率转换模型,确保驱动信号向共振频率的快速收敛。在搜索共振频率时测量到的最大相对误差为0.04[%]。谐振频率的跟踪显示没有振荡或超调,因为谐振频率是精确测量的。所使用的特定传感器在1Hz时实现的测量本底噪声为0.13 [mHz/Hz]。所提出的测量方法可用于其他同样依赖于压电谐振器谐振频率测量的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resonance frequency measurement for space accelerometer
Resonance frequency measurements are used for various applications: atomic force microscopes, mass detection, biochemical and inertial sensors. In this article a detailed analysis of the performances of a resonance frequency measurement method are presented and demonstrated using a space grade accelerometer. The method consists of replacing the feedback of the oscillator with a controller that drives the sensor’s input, acquires the sensor’s output, determines the phase shift between the sensor’s input and output, converts it to a resonance frequency measurement and adjusts the drive signal’s frequency. The innovative phase to frequency conversion model used ensures a fast convergence of the drive signal towards the resonance frequency. The maximum measured relative error while searching for the resonance frequency is of 0.04 [%]. The tracking of the resonance frequency shows no oscillations or overshoots because the resonance frequency is exactly measured. The achieved measurement noise floor for the specific sensor used is 0.13 [mHz/Hz] at 1Hz. The measurement method presented can be exploited for other applications which also rely on the measurement of the resonance frequency of a piezo-electric resonator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信