一类三次哈密顿系统双同斜环和异斜环附近的极限环分岔

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Yanqin Xiong , Xiang Zhang
{"title":"一类三次哈密顿系统双同斜环和异斜环附近的极限环分岔","authors":"Yanqin Xiong ,&nbsp;Xiang Zhang","doi":"10.1016/j.bulsci.2025.103640","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the double homoclinic and heteroclinic bifurcations by perturbing a cubic Hamiltonian system with polynomial perturbations of degree <em>n</em>. It is proved that <span><math><mn>5</mn><mo>[</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo><mo>,</mo><mspace></mspace><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mn>2</mn><mo>[</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span> limit cycles can be bifurcated from the period annuli near the double homoclicic loop and the heteroclinic loop, respectively. This result improves the lower bound on the number of the bifurcated limit cycles comparing with the known results for the related problems. To achieve our results we develop the techniques on calculating the base and the relative relations of the elements in the base, formed partly by curve integral functions along ovals of level sets of the Hamiltonian function, which appear in the expansions of the first order Melnikov functions.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"201 ","pages":"Article 103640"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit cycle bifurcations near double homoclinic and heteroclinic loops of a class of cubic Hamiltonian systems\",\"authors\":\"Yanqin Xiong ,&nbsp;Xiang Zhang\",\"doi\":\"10.1016/j.bulsci.2025.103640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the double homoclinic and heteroclinic bifurcations by perturbing a cubic Hamiltonian system with polynomial perturbations of degree <em>n</em>. It is proved that <span><math><mn>5</mn><mo>[</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo><mo>,</mo><mspace></mspace><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mn>2</mn><mo>[</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span> limit cycles can be bifurcated from the period annuli near the double homoclicic loop and the heteroclinic loop, respectively. This result improves the lower bound on the number of the bifurcated limit cycles comparing with the known results for the related problems. To achieve our results we develop the techniques on calculating the base and the relative relations of the elements in the base, formed partly by curve integral functions along ovals of level sets of the Hamiltonian function, which appear in the expansions of the first order Melnikov functions.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"201 \",\"pages\":\"Article 103640\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725000661\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000661","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文通过对一个n次多项式扰动的三次哈密顿系统进行扰动,研究了该系统的二重同斜分岔和异斜分岔问题。证明了在双同斜环和异斜环附近的周期环上分别有5个[n−12]、n≥3和2个[n−12]极限环可以分岔。该结果与已知的有关问题的结果相比,改进了分岔极限环数的下界。为了实现我们的结果,我们发展了计算基和基中元素的相对关系的技术,部分由沿哈密顿函数的水平集椭圆的曲线积分函数构成,这些函数出现在一阶Melnikov函数的展开式中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit cycle bifurcations near double homoclinic and heteroclinic loops of a class of cubic Hamiltonian systems
This paper studies the double homoclinic and heteroclinic bifurcations by perturbing a cubic Hamiltonian system with polynomial perturbations of degree n. It is proved that 5[n12],n3 and 2[n12] limit cycles can be bifurcated from the period annuli near the double homoclicic loop and the heteroclinic loop, respectively. This result improves the lower bound on the number of the bifurcated limit cycles comparing with the known results for the related problems. To achieve our results we develop the techniques on calculating the base and the relative relations of the elements in the base, formed partly by curve integral functions along ovals of level sets of the Hamiltonian function, which appear in the expansions of the first order Melnikov functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信