{"title":"含硼富镁核屏蔽尾矿的屏蔽性能及屏蔽机理研究","authors":"Mengge Dong , G. Lakshminarayana , Xuefei Zhang , Xiangxin Xue","doi":"10.1016/j.net.2025.103660","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient utilization of boron-containing magnesium-rich tailings (BCMRTs) represents a critical challenge for the sustainable development of boron industry. This study introduces an innovative approach to repurpose BCMRTs as shielding materials and systematically investigates their shielding properties and underlying mechanisms against thermal/fast neutrons, and gamma rays. The findings demonstrate that BCMRTs exhibit exceptional thermal neutron attenuation, achieving a shielding efficiency of up to 100 % with merely 1 cm of material, thereby surpassing the performance of certain commercially available shields. However, further optimization is necessary to enhance their efficiency against fast neutrons and gamma rays. Neutron attenuation mechanism is predominantly governed by absorption effect of boron in low-energy range, elements with higher atomic number contribute in middle energy range through elastic scattering, and both elastic and inelastic scattering in high energy range. Gamma ray attenuation mechanism is predominantly governed by elements with high atomic number, with distinct nuclear interactions dominating across various energy ranges. Furthermore, comprehensive attenuation parameters for both narrow-beam and wide-beam gamma rays within the 0.001–100,000 MeV range are presented. This research provides critical insights into the potential application of BCMRTs in the development of advanced shielding materials.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":"57 9","pages":"Article 103660"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of shielding properties and mechanisms of boron-containing magnesium-rich tailings for nuclear shielding application\",\"authors\":\"Mengge Dong , G. Lakshminarayana , Xuefei Zhang , Xiangxin Xue\",\"doi\":\"10.1016/j.net.2025.103660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient utilization of boron-containing magnesium-rich tailings (BCMRTs) represents a critical challenge for the sustainable development of boron industry. This study introduces an innovative approach to repurpose BCMRTs as shielding materials and systematically investigates their shielding properties and underlying mechanisms against thermal/fast neutrons, and gamma rays. The findings demonstrate that BCMRTs exhibit exceptional thermal neutron attenuation, achieving a shielding efficiency of up to 100 % with merely 1 cm of material, thereby surpassing the performance of certain commercially available shields. However, further optimization is necessary to enhance their efficiency against fast neutrons and gamma rays. Neutron attenuation mechanism is predominantly governed by absorption effect of boron in low-energy range, elements with higher atomic number contribute in middle energy range through elastic scattering, and both elastic and inelastic scattering in high energy range. Gamma ray attenuation mechanism is predominantly governed by elements with high atomic number, with distinct nuclear interactions dominating across various energy ranges. Furthermore, comprehensive attenuation parameters for both narrow-beam and wide-beam gamma rays within the 0.001–100,000 MeV range are presented. This research provides critical insights into the potential application of BCMRTs in the development of advanced shielding materials.</div></div>\",\"PeriodicalId\":19272,\"journal\":{\"name\":\"Nuclear Engineering and Technology\",\"volume\":\"57 9\",\"pages\":\"Article 103660\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1738573325002281\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573325002281","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Investigation of shielding properties and mechanisms of boron-containing magnesium-rich tailings for nuclear shielding application
Efficient utilization of boron-containing magnesium-rich tailings (BCMRTs) represents a critical challenge for the sustainable development of boron industry. This study introduces an innovative approach to repurpose BCMRTs as shielding materials and systematically investigates their shielding properties and underlying mechanisms against thermal/fast neutrons, and gamma rays. The findings demonstrate that BCMRTs exhibit exceptional thermal neutron attenuation, achieving a shielding efficiency of up to 100 % with merely 1 cm of material, thereby surpassing the performance of certain commercially available shields. However, further optimization is necessary to enhance their efficiency against fast neutrons and gamma rays. Neutron attenuation mechanism is predominantly governed by absorption effect of boron in low-energy range, elements with higher atomic number contribute in middle energy range through elastic scattering, and both elastic and inelastic scattering in high energy range. Gamma ray attenuation mechanism is predominantly governed by elements with high atomic number, with distinct nuclear interactions dominating across various energy ranges. Furthermore, comprehensive attenuation parameters for both narrow-beam and wide-beam gamma rays within the 0.001–100,000 MeV range are presented. This research provides critical insights into the potential application of BCMRTs in the development of advanced shielding materials.
期刊介绍:
Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters.
NET covers all fields for peaceful utilization of nuclear energy and radiation as follows:
1) Reactor Physics
2) Thermal Hydraulics
3) Nuclear Safety
4) Nuclear I&C
5) Nuclear Physics, Fusion, and Laser Technology
6) Nuclear Fuel Cycle and Radioactive Waste Management
7) Nuclear Fuel and Reactor Materials
8) Radiation Application
9) Radiation Protection
10) Nuclear Structural Analysis and Plant Management & Maintenance
11) Nuclear Policy, Economics, and Human Resource Development