{"title":"环面的上同基","authors":"Xin Fu , Tseleung So , Jongbaek Song","doi":"10.1016/j.topol.2025.109392","DOIUrl":null,"url":null,"abstract":"<div><div>Given a compact toric surface, the multiplication of its rational cohomology can be described in terms of the intersection products of Weil divisors, or in terms of the cup products of cohomology classes representing specific cells. In this paper, we aim to compare these two descriptions. More precisely, we define two different cohomology bases, the <em>Poincaré dual basis</em> and the <em>cellular basis</em>, which give rise to matrices representing the intersection product and the cup product. We prove that these representing matrices are inverse of each other.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"369 ","pages":"Article 109392"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cohomology bases of toric surfaces\",\"authors\":\"Xin Fu , Tseleung So , Jongbaek Song\",\"doi\":\"10.1016/j.topol.2025.109392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a compact toric surface, the multiplication of its rational cohomology can be described in terms of the intersection products of Weil divisors, or in terms of the cup products of cohomology classes representing specific cells. In this paper, we aim to compare these two descriptions. More precisely, we define two different cohomology bases, the <em>Poincaré dual basis</em> and the <em>cellular basis</em>, which give rise to matrices representing the intersection product and the cup product. We prove that these representing matrices are inverse of each other.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"369 \",\"pages\":\"Article 109392\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125001907\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125001907","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Given a compact toric surface, the multiplication of its rational cohomology can be described in terms of the intersection products of Weil divisors, or in terms of the cup products of cohomology classes representing specific cells. In this paper, we aim to compare these two descriptions. More precisely, we define two different cohomology bases, the Poincaré dual basis and the cellular basis, which give rise to matrices representing the intersection product and the cup product. We prove that these representing matrices are inverse of each other.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.