Xiaoqi Ban , Jin Yao , Wanzhong Yin , Taozhong Zhang , Wenju Sun , Weifan Du , Yulian Wang
{"title":"黄芩苷在菱镁矿与白云石浮选分离中的表面选择性吸附及界面机理研究","authors":"Xiaoqi Ban , Jin Yao , Wanzhong Yin , Taozhong Zhang , Wenju Sun , Weifan Du , Yulian Wang","doi":"10.1016/j.apt.2025.104903","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the similarities in crystal structure and chemical composition, the surface electric properties, wettability, and interfacial characteristics of magnesite and dolomite are highly similar, posing significant challenges in flotation separation. This study investigates the selective inhibition mechanism of the environmentally friendly depressant baicalin (BA) on dolomite in a sodium oleate (NaOl) flotation system, focusing on interfacial behavior control. Micro-flotation tests showed successful separation of magnesite and dolomite under optimal reagent conditions (pH 10.0, BA concentration of 60 mg/L, NaOl concentration of 120 mg/L). Zeta potential and contact angle measurements indicated that BA increased the negative charge on dolomite and significantly reduced its hydrophobicity, with minimal impact on magnesite. FTIR and XPS analyses revealed strong chemisorption of BA’s hydroxyl groups on calcium sites of dolomite, with weaker affinity for magnesium sites. AFM imaging showed a notable increase in the surface roughness of dolomite after BA treatment, further confirming selective adsorption. A flotation separation model was developed based on micro-flotation and characterization results, shedding light on the separation mechanism and the differences in surface adsorption and interfacial behavior of magnesite and dolomite.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"36 6","pages":"Article 104903"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-depth analysis of surface selective adsorption and interfacial mechanisms in the efficient flotation separation of magnesite and dolomite with the environmentally friendly inhibitor baicalin\",\"authors\":\"Xiaoqi Ban , Jin Yao , Wanzhong Yin , Taozhong Zhang , Wenju Sun , Weifan Du , Yulian Wang\",\"doi\":\"10.1016/j.apt.2025.104903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the similarities in crystal structure and chemical composition, the surface electric properties, wettability, and interfacial characteristics of magnesite and dolomite are highly similar, posing significant challenges in flotation separation. This study investigates the selective inhibition mechanism of the environmentally friendly depressant baicalin (BA) on dolomite in a sodium oleate (NaOl) flotation system, focusing on interfacial behavior control. Micro-flotation tests showed successful separation of magnesite and dolomite under optimal reagent conditions (pH 10.0, BA concentration of 60 mg/L, NaOl concentration of 120 mg/L). Zeta potential and contact angle measurements indicated that BA increased the negative charge on dolomite and significantly reduced its hydrophobicity, with minimal impact on magnesite. FTIR and XPS analyses revealed strong chemisorption of BA’s hydroxyl groups on calcium sites of dolomite, with weaker affinity for magnesium sites. AFM imaging showed a notable increase in the surface roughness of dolomite after BA treatment, further confirming selective adsorption. A flotation separation model was developed based on micro-flotation and characterization results, shedding light on the separation mechanism and the differences in surface adsorption and interfacial behavior of magnesite and dolomite.</div></div>\",\"PeriodicalId\":7232,\"journal\":{\"name\":\"Advanced Powder Technology\",\"volume\":\"36 6\",\"pages\":\"Article 104903\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921883125001244\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883125001244","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
In-depth analysis of surface selective adsorption and interfacial mechanisms in the efficient flotation separation of magnesite and dolomite with the environmentally friendly inhibitor baicalin
Due to the similarities in crystal structure and chemical composition, the surface electric properties, wettability, and interfacial characteristics of magnesite and dolomite are highly similar, posing significant challenges in flotation separation. This study investigates the selective inhibition mechanism of the environmentally friendly depressant baicalin (BA) on dolomite in a sodium oleate (NaOl) flotation system, focusing on interfacial behavior control. Micro-flotation tests showed successful separation of magnesite and dolomite under optimal reagent conditions (pH 10.0, BA concentration of 60 mg/L, NaOl concentration of 120 mg/L). Zeta potential and contact angle measurements indicated that BA increased the negative charge on dolomite and significantly reduced its hydrophobicity, with minimal impact on magnesite. FTIR and XPS analyses revealed strong chemisorption of BA’s hydroxyl groups on calcium sites of dolomite, with weaker affinity for magnesium sites. AFM imaging showed a notable increase in the surface roughness of dolomite after BA treatment, further confirming selective adsorption. A flotation separation model was developed based on micro-flotation and characterization results, shedding light on the separation mechanism and the differences in surface adsorption and interfacial behavior of magnesite and dolomite.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)